精英家教网 > 高中数学 > 题目详情
13.已知F为抛物线C:y2=4x的焦点,点E在点C的准线上,且在x轴上方,线段EF的垂直平分线于C的准线交于点Q(-1,$\frac{3}{2}$),与C交于点P,则△PEF的面积为(  )
A.5B.10C.15D.20

分析 由抛物线方程求出焦点坐标,设出E的坐标(-1,m),利用EF和QP垂直求得m的值,则EF、QP的方程可求,求出EF的长度,求出P的坐标,由三角形的面积公式求得△PEF的面积.

解答 解:如图,
由抛物线方程为y2=4x,得F(1,0),设E(-1,m)(m>0),
则EF中点为G(0,$\frac{m}{2}$),${k}_{EF}=-\frac{m}{2}$,又Q(-1,$\frac{3}{2}$),
∴${k}_{QG}=\frac{\frac{3}{2}-\frac{m}{2}}{-1-0}=\frac{m-3}{2}$,则$-\frac{m}{2}•\frac{m-3}{2}=-1$,解得:m=4.
∴E(-1,4),
则|EF|=$\sqrt{(-1-1)^{2}+(4-0)^{2}}=2\sqrt{5}$,
直线EF的方程为$\frac{y-0}{4-0}=\frac{x-1}{-1-1}$,化为一般式得:2x+y-2=0.
QG所在直线方程为y-$\frac{3}{2}$=$\frac{1}{2}(x+1)$,即x-2y+4=0.
联立$\left\{\begin{array}{l}{x-2y+4=0}\\{{y}^{2}=4x}\end{array}\right.$,得$\left\{\begin{array}{l}{x=4}\\{y=4}\end{array}\right.$,即P(4,4),
∴P到直线EF的距离为d=$\frac{|2×4+4-2|}{\sqrt{5}}=2\sqrt{5}$.
则△PEF的面积为$\frac{1}{2}×2\sqrt{5}×2\sqrt{5}=10$.
故选:B.

点评 本题考查了抛物线的简单性质,考查了抛物线的应用,平面解析式的基础知识.考查了考生的基础知识的综合运用和知识迁移的能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.集合U={1,2,3,4,5,6},A={2,3},B={x∈Z|x2-6x+5<0},则∁U(A∪B)=(  )
A.{1,5,6}B.{1,4,5,6}C.{2,3,4}D.{1,6}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},}&{x≤0}\\{f(x-1)-1,}&{x>0}\end{array}\right.$,则f(log29)=-$\frac{55}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设向量|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{20}$,$\overrightarrow{a}•\overrightarrow{b}$=4,则|$\overrightarrow{a}-\overrightarrow{b}$|=(  )
A.$\sqrt{2}$B.2$\sqrt{3}$C.2D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=$\left\{\begin{array}{l}{x}^{\frac{1}{3}},x≥8\\ 2{e}^{x-8},x<8\end{array}\right.$,则使得f(x)≤3成立的x的取值范围是{x|x≤27}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知实数x∈{1,2,3,4,5,6,7,8},执行如图所示的程序框图,则输出的x不小于121的概率为(  )
A.$\frac{3}{4}$B.$\frac{5}{8}$C.$\frac{7}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=asinx-$\sqrt{3}$cosx的一条对称轴为x=-$\frac{π}{6}$,且f(x1)•f(x2)=-4,则|x1+x2|的最小值为(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{2}{3}π$D.$\frac{4}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图的程序框图,当输入25时,则该程序运行后输出的结果是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知公差不为0的等差数列{an}中,a1,a2,a5依次成等比数列,则$\frac{a_5}{a_1}$=9.

查看答案和解析>>

同步练习册答案