精英家教网 > 高中数学 > 题目详情
3.已知公差不为0的等差数列{an}中,a1,a2,a5依次成等比数列,则$\frac{a_5}{a_1}$=9.

分析 先利用等差数列的通项公式,用a1和d分别表示出等差数列的a1,a2,a5,进而利用等比数列的性质建立等式,求得a1和d的关系,进而再利用等差数列的通项公式化简$\frac{{a}_{5}}{{a}_{1}}$,将求出的a1和d的关系代入,合并约分后即可求出所求式子的值.

解答 解:∵a1,a2,a5成等比数列,
∴a22=a1•a5,即(a1+d)2=a1(a1+4d),
由d≠0,
解得:2a1=d,
∴$\frac{{a}_{5}}{{a}_{1}}$=$\frac{\frac{1}{2}d+4d}{\frac{1}{2}d}$=9.
故答案为:9.

点评 此题考查了等比数列的性质,以及等比数列的通项公式,熟练掌握性质及通项公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知F为抛物线C:y2=4x的焦点,点E在点C的准线上,且在x轴上方,线段EF的垂直平分线于C的准线交于点Q(-1,$\frac{3}{2}$),与C交于点P,则△PEF的面积为(  )
A.5B.10C.15D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.双曲线x2-2y2=2的焦点坐标是(±$\sqrt{3}$,0),离心率是$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.i是虚数单位,复数$\frac{5-2i}{2+5i}$=(  )
A.-iB.iC.-$\frac{21}{29}$-$\frac{20}{29}$iD.-$\frac{4}{21}$+$\frac{10}{21}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB∥CD,
PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.
(Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)若二面角P-AC-E的余弦值为$\frac{{\sqrt{6}}}{3}$,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x4+(2-λ)x2+2-λ,问是否存在λ,使函数f(x)在(-∞,-1)上是减函数,在(-1,0)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,三个内角A,B,C所对的边分别为a,b,c,且c(sinB-cosA)=acosC
(1)求C的值;
(2)若a,b,c成等比数列,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义A*B,B*C,C*D,D*A的运算分别对应图中的(1)、(2)、(3)、(4),那么下图中的(A)、(B)所对应的运算结果可能是(  )
A.B*D  A*DB.B*D  A*CC.B*C  A*DD.C*D  A*D

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}和{bn}满足a1•a2•a3…an=2${\;}^{{b}_{n}}$(n∈N*),若{an}为等比数列,且a1=2,b3=3+b2
(1)求an和bn
(2)设cn=$\frac{{b}_{n}-{a}_{n}}{{a}_{n}•{b}_{n}}$(n∈N*),记数列{cn}的前n项和为Sn,求Sn

查看答案和解析>>

同步练习册答案