精英家教网 > 高中数学 > 题目详情
15.已知集合A={x∈R|x<$\frac{π}{2}$},B={1,2,3,4},则(∁RA)∩B={2,3,4}.

分析 先求出(∁UA),再根据交集的运算法则计算即可

解答 解:∵集合A={x∈R|x<$\frac{π}{2}$},
∴(∁UA)={x∈R|x≥$\frac{π}{2}$},
∵B={1,2,3,4},
∴(∁UA)∩B={2,3,4}
故答案为:{2,3,4}.

点评 本题考查集合的交并补运算,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若直线x-y-m=0被圆x2+y2-8x+12=0所截得的弦长为$2\sqrt{2}$,则实数m的值为(  )
A.2或6B.0或8C.2或0D.6或8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(Ⅰ)计算:($\frac{4}{3}$)-1+($\frac{1}{8}$)${\;}^{\frac{2}{3}}$+lg3-lg0.3
(Ⅱ)已知tanα=2,求$\frac{sinα-sin(\frac{π}{2}-α)}{sin(π-α)+2cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若角α的顶点为坐标原点,始边与x轴的非负半轴重合,且终边上一点的坐标为(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则tanα的值为(  )
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=2$\sqrt{3}$sin(ωx+$\frac{π}{3}$)(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形.
(Ⅰ)指出函数f(x)的值域;
(Ⅱ)求函数f(x)的解析式;
(Ⅲ)若f(x0)=$\frac{8\sqrt{3}}{5}$,且x0∈(-$\frac{10}{3}$,$\frac{2}{3}$),求f(x0+6)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,直四棱柱ABCD-A1B1C1D1的底面是等腰梯形,AB=CD=AD=1,BC=2,E,M,N分别是所在棱的中点.
(1)证明:平面MNE⊥平面D1DE;
(2)证明:MN∥平面D1DE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a>0,b∈R,函数f(x)=4ax2-2bx-a+b的定义域为[0,1].
(Ⅰ)当a=1时,函数f(x)在定义域内有两个不同的零点,求b的取值范围;
(Ⅱ)记f(x)的最大值为M,证明:f(x)+M>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow a=(2cosx,2)$,$\overrightarrow b=(cosx,\frac{1}{2})$,记函数$f(x)=\overrightarrow a•\overrightarrow b+\sqrt{3}sin2x$
(1)求函数f(x)的单调增区间;
(2)求函数f(x)的最值以及取得最值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.从集合{1,2,3,4,5,6}中随机抽取一个数a,从集合{1,2,3}中随机收取一个数b,则loga2b=1的概率为(  )
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案