| A. | (-1,0)∪(0,1) | B. | (-∞,-1)∪(1,+∞) | C. | (-$\sqrt{2}$,0)∪(0,$\sqrt{2}$) | D. | (-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞) |
分析 由双曲线的对称性知D在x轴上,设D(x,0),则由BD⊥AB得$\frac{\frac{{b}^{2}}{a}}{c-x}$•$\frac{\frac{{b}^{2}}{a}}{c-a}$=-1,求出c-x,利用D到直线BC的距离小于a+$\sqrt{{a^2}+{b^2}}$,即可得出结论.
解答 解:由题意,A(a,0),B(c,$\frac{{b}^{2}}{a}$),C(c,-$\frac{{b}^{2}}{a}$),由双曲线的对称性知D在x轴上,
设D(x,0),则由BD⊥AB得$\frac{\frac{{b}^{2}}{a}}{c-x}$•$\frac{\frac{{b}^{2}}{a}}{c-a}$=-1,
∴c-x=$\frac{{b}^{4}}{{a}^{2}(a-c)}$,
∵D到直线BC的距离小于a+$\sqrt{{a^2}+{b^2}}$,
∴c-x=|$\frac{{b}^{4}}{{a}^{2}(a-c)}$|<a+$\sqrt{{a^2}+{b^2}}$,
∴$\frac{{b}^{4}}{{a}^{2}}$<c2-a2=b2,
∴0<$\frac{b}{a}$<1,
∴双曲线的渐近线斜率的取值范围是(-1,0)∪(0,1).
故选:A.
点评 本题考查双曲线的性质,考查学生的计算能力,确定D到直线BC的距离是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充要条件 | B. | 充分而不必要条件 | ||
| C. | 必要而不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com