精英家教网 > 高中数学 > 题目详情
9.已知平行四边形ABCD的对角线交于O,且$\overrightarrow{AD}$=(3,7),$\overrightarrow{AB}$=(-2,1),则$\overrightarrow{OB}$的坐标为($-\frac{5}{2},-3$).

分析 利用已知条件,列出向量关系,即可求出$\overrightarrow{OB}$的坐标.

解答 解:平行四边形ABCD的对角线交于O,且$\overrightarrow{AD}$=(3,7),$\overrightarrow{AB}$=(-2,1),
可得$\overrightarrow{OB}$=$\frac{1}{2}$$\overrightarrow{DB}$=$\frac{1}{2}$($\overrightarrow{DA}+\overrightarrow{AB}$)=$\frac{1}{2}[(-2,1)-(3,7)]$=($-\frac{5}{2},-3$).
$\overrightarrow{OB}$的坐标为:($-\frac{5}{2},-3$).
故答案为:($-\frac{5}{2},-3$).

点评 本题考查向量共线的充要条件的运用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=-2x2+bx+c,当x=1时有最大值1.
(1)若方程|f(x)|=m有4个不同实根,求实数m的取值范围,并求这4个实根的和;
(2)当x∈[m,n](0<m<n)时,f(x)取值范围为[$\frac{1}{n}$,$\frac{1}{m}$],试求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.编号为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录如下:
运动员编号A1A2A3A4A5A6A7A8
得分1535212825361834
运动员编号A9A10A11A12A13A14A15A16
得分1726253322123138
(Ⅰ)将得分在对应区间内的人数填入相应的空格;
区间[10,20)[20,30)[30,40]
人数
(Ⅱ)从得分在区间[20,30)内的运动员中随机抽取2人,A1,A2,…A16
(i)用运动员的编号列出所有可能的抽取结果;(ii)求这2人得分之和大于50的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.cos6°cos36°+cos84°cos54°的值等于(  )
A.$-\frac{1}{2}$B.0C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等差数列{an}中,a1=1,公差d=2,若am=23,则m=(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z=$\frac{{i+{i^2}+{i^3}+{i^4}+…+{i^9}}}{1+i}$,(i为虚数单位),则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知命题p:不等式4x2+4(m-2)x+1>0的解集为R,命题q:方程x2+mx+1=0有两个不相等的负实根.若p∨q为真命题、p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=x3+3ax2+bx+a2(a>1)在x=-1时有极值0.
(1)求常数 a,b的值;
(2)方程f(x)=c在区间[-4,0]上有三个不同的实根时,求实数c的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\frac{1}{2}$|$\overrightarrow{b}$|,($\sqrt{3}$$\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角大小为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步练习册答案