精英家教网 > 高中数学 > 题目详情
6.在平面直角坐标系xOy中,P为不等式组$\left\{\begin{array}{l}2x-y+2≥0\\ x-2y+1≤0\\ x+y-2≤0\end{array}\right.$,所表示的区域上的一个动点,已知点Q(1,-1),那么|PQ|的最大值为(  )
A.$\sqrt{5}$B.$\sqrt{10}$C.2D.2$\sqrt{3}$

分析 作出不等式度对应的平面区域,利用两点间的距离关系进行求解,即可得到结论.

解答 解:作出不等式组对应的平面区域如图:
由$\left\{\begin{array}{l}{2x-y+2=0}\\{x+y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$,
则B(0,2),
∴由图象可知当P位于B,|PQ|的距离最大,
最大为$\sqrt{(1-0)^{2}+(-1-2)^{2}}=\sqrt{1+9}=\sqrt{10}$.
故选:B.

点评 本题主要考查线性规划的应用,利用数形结合,以及两点间的距离公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=ex-x2+a,x∈R的图象在点x=0处的切线方程为y=bx.
(Ⅰ)g(x)=$\frac{f(x)}{x}$,x∈(0,+∞),讨论函数g(x)的单调性与极值;
(Ⅱ)若k∈Z,且f(x)+$\frac{1}{2}$(3x2-5x-2k)≥0对任意x∈R恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(b>a>0)的两条渐近线的夹角为60°,则双曲线的离心率为(  )
A.$\sqrt{3}$B.2C.$\frac{4}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果双曲线的离心率e=$\frac{\sqrt{5}+1}{2}$,则称此双曲线为黄金双曲线.有以下几个命题:
①双曲线$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{\sqrt{5}-1}=1$是黄金双曲线; 
②双曲线y${\;}^{2}-\frac{2{x}^{2}}{\sqrt{5}+1}=1$是黄金双曲线;
③在双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$中,F1为左焦点,A2为右顶点,B1(0,b),若∠F1 B1 A2=90°,则该双曲线是黄金双曲线;
④在双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$中,过焦点F2作实轴的垂线交双曲线于M、N两点,O为坐标原点,若∠MON=120°,则该双曲线是黄金双曲线.
其中正确命题的序号为(  )
A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个四棱锥的底面是正方形,其正视图和侧视图均为如图所示的等腰三角形,则该四棱锥的侧面积为16$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}{4}^{x}-15,x∈(-∞,2]\\{log}_{2}x,x∈(2,+∞)\end{array}\right.$,则f(f(2$\sqrt{2}$))=-7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.同底的两个正三棱锥内接于同一个球,已知两个正三棱锥的底面边长为a,球的半径为R,设两个正三棱锥的侧面与底面所成的角分别为α,β,则tan(α+β)的值是-$\frac{4\sqrt{3}R}{3a}$.

查看答案和解析>>

科目:高中数学 来源:2017届四川成都七中高三10月段测数学(文)试卷(解析版) 题型:选择题

函数的图象关于( )

A.坐标原点对称 B.直线对称 C.轴对称 D.直线对称

查看答案和解析>>

同步练习册答案