精英家教网 > 高中数学 > 题目详情
△ABC中,角A,B,C所对的边分别为a,b,c,
(1)证明:acosB+bcosA=c;
(2)若
sinC
2sinA-sinC
=
b2-a2-c2
c2-a2-b2
,求角B的大小.
考点:余弦定理的应用
专题:综合题,解三角形
分析:(1)先利用正弦定理把a和b的表达式代入acosB+bcosA中,利用了两角和公式化简整理,求得acosB+bcosA=2RsinC,进而把2RsinC转化成边,原式得证;
(2)利用余弦定理,正弦定理化简,可得cosB=
1
2
,即可求角B的大小.
解答: (1)证明:由正弦定理得:
a
sinA
=
b
sinB
=
c
sinC
=2R
∴左=acosB+bcosA=2RsinAcosB+2RsinBcosA
=2Rsin(B+A)=2RsinC=c=右
原式得证.
(2)解:∵
sinC
2sinA-sinC
=
b2-a2-c2
c2-a2-b2

sinC
2sinA-sinC
=
ccosB
bcosC

∴sinBcosC=2sinAcosB-cosBsinC,
∴sinBcosC+cosBsinC=2sinAcosB,
∴sin(B+C)=2sinAcosB,
∴sinA=2sinAcosB,
∴cosB=
1
2

∵0°<B<180°,
∴B=60°.
点评:本题主要考查了余弦定理、正弦定理的应用.解题的关键是利用正弦定理完成了边角问题的互化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=lnx-
a
x
-x.
(1)求函数f(x)的单调区间;
(2)若A、B是曲线y=f(x)上的任意不同两点,其横坐标分别为m、n,曲线y=f(x)在x=t处的切线与直线AB平行,求证:m+n>2t.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,已知a3=5,a8=15.
(1)求通项公式an
(2)若Sn=144,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出两个命题,
命题甲:关于x的不等式:x2+(a-1)x+a2<0的解集是∅;
命题乙:正比例函数y=(2a2-a-1)x图象经过第一、三象限.
分别求出符合下列条件的a的取值范围:
(1)甲、乙 都是真命题;
(2)甲、乙 至少有一个是真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x、y满足约束条件
x≤2
y≤2
x+y≥2

(1)求目标函数z=x+2y的最大值;
(2)求目标函数z=x-2y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
alnx
x
+bx图象在点P(1,f(x))处切线方程是y=-1,其中实数a,b是常数.
(1)求实数a,b的值;
(2)若x=1是函数g(x)=1-clnx-x2的唯一零点,求实数c的取值范围;
(3)若对任意的正实数x,以及任意大于m的实数t,都有
ln(x+t)
x+t
-x<
lnt
t
恒成立,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C的对边分别为a、b、c,已知asinC+
3
ccos(B+C)=0.
(Ⅰ)求A的大小;
(Ⅱ)若a+b+c=3,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,k),
b
=(2,2),且
a
+
b
a
共线,那么k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线(a-2)y=x+a2-6a+8不经过第二象限,则实数a的取值范围为
 

查看答案和解析>>

同步练习册答案