精英家教网 > 高中数学 > 题目详情
18.已知等差数列{an}的前项和为Sn,且S5=30,则a3=(  )
A.6B.7C.8D.9

分析 利用等差数列的前n项和公式及其性质即可得出.

解答 解:由等差数列的前n项和公式及其性质可得:S5=30=$\frac{5({a}_{1}+{a}_{5})}{2}$=5a3
解得a3=6.
故选:A.

点评 本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{2}{x^2}$-2x,g(x)=alnx.
(1)讨论函数y=f(x)-g(x)的单调区间
(2)设h(x)=f(x)-g(x),若对任意两个不等的正数x1,x2,都有$\frac{{h({x_1})-h({x_2})}}{{{x_1}-{x_2}}}$>2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数g(x)=ex(x+1).
(1)求函数g(x)在(0,1)处的切线方程;
(2)设x>0,讨论函数h(x)=g(x)-a(x3+x2)(a>0)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,A1,A2为椭圆$\frac{x^2}{9}+\frac{y^2}{5}=1$长轴的左、右端点,O为坐标原点,S,Q,T为椭圆上不同于A1,A2的三点,直线QA1,QA2,OS,OT围成一个平行四边形OPQR,则|OS|2+|OT|2=(  )
A.14B.12C.9D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}\right.$(θ为参数),以O为极点,x轴的非负半轴为极轴且取相同的单位长度建立极坐标系.
(1)求圆C的极坐标方程;
(2)若直线l的极坐标方程是$2ρsin({θ+\frac{π}{3}})=3\sqrt{3}$,射线$OM:θ=\frac{π}{3}$与圆C的交点为O、P,与直线l的交点为Q.求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.正方形ABCD与等边三角形BCE有公共边BC,若∠ABE=120°,则BE与平面ABCD所成角的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在平面直角坐标系xOy中,椭圆Ω:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,直线l:y=2上的点和椭圆Ω上的点的距离的最小值为1.
(Ⅰ) 求椭圆Ω的方程;
(Ⅱ) 已知椭圆Ω的上顶点为A,点B,C是Ω上的不同于A的两点,且点B,C关于原点对称,直线AB,AC分别交直线l于点E,F.记直线AC与AB的斜率分别为k1,k2
①求证:k1•k2为定值;
②求△CEF的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|x2-2x-3<0},B={x||x|<2},则A∩B=(  )
A.{x|-2<x<2}B.{x|-2<x<3}C.{x|-1<x<3}D.{x|-1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.两曲线$y=\sqrt{x}$,y=x2在x∈[0,1]内围成的图形面积是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

同步练习册答案