精英家教网 > 高中数学 > 题目详情
18.已知数列{an}中,a1=2,且$\frac{{a_{n+1}^2}}{a_n}=4({a_{n+1}}-{a_n})(n∈{N^*})$,则其前9项的和S9=1022.

分析 由题意整理可得:an+1=2an,则数列{an}以2为首项,以2为公比的等比数列,利用等比数列的前n项和公式,即可求得S9

解答 解:由题意可知an+12=4an(an+1-an),
则an+12=4(anan+1-an2),an+12-4anan+1+4an2=0
整理得:(an+1-2an2=0,则an+1=2an
∴数列{an}以2为首项,以2为公比的等比数列,
则前9项的和S9=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=$\frac{2(1-{2}^{9})}{1-2}$=1022,
故答案为:1022.

点评 本题考查等比数列的性质,考查等比数列的前n项和公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设f(x)=$\sqrt{x}$的图象在点(1,1)处的切线为l,则曲线y=f(x),直线l及x轴所围成的图形的面积为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥3}\\{f(x+1),x<3}\end{array}\right.$f(log23)的值为(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{12}$D.$\frac{1}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,若输入x的值为1,输出n的值为N,则在区间[-1,4]上随机选取一个数M,M≥N-1的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左,右焦点为F1,F2,离心率为e.P是椭圆上一点,满足PF2⊥F1F2,点Q在线段PF1上,且$\overrightarrow{{F_1}Q}=2\overrightarrow{QP}$.若$\overrightarrow{{F_1}P}•\overrightarrow{{F_2}Q}$=0,则e2=(  )
A.$\sqrt{2}-1$B.$2-\sqrt{2}$C.$2-\sqrt{3}$D.$\sqrt{5}-2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=lnx-x+m(m为常数).
(1)求f(x)的极值;
(2)设m>1,记f(x+m)=g(x),已知x1,x2为函数g(x)是两个零点,求证:x1+x2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A($\sqrt{3}$,$\frac{1}{2}$),B(1,$\frac{{\sqrt{3}}}{2}$).
(1)求椭圆E的离心率;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点P,Q,且$\overrightarrow{OP}$⊥$\overrightarrow{OQ}$?若存在,求出该圆的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设变量x,y满足$\left\{\begin{array}{l}{x-y≤10}\\{0≤x+y≤20}\\{0≤y≤15}\end{array}\right.$,则2x+3y的最大值为55.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知zi=2-i,则复数z在复平面对应点的坐标是(  )
A.(-1,-2)B.(-1,2)C.(1,-2)D.(1,2)

查看答案和解析>>

同步练习册答案