精英家教网 > 高中数学 > 题目详情
4.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A($\sqrt{3}$,$\frac{1}{2}$),B(1,$\frac{{\sqrt{3}}}{2}$).
(1)求椭圆E的离心率;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点P,Q,且$\overrightarrow{OP}$⊥$\overrightarrow{OQ}$?若存在,求出该圆的方程,若不存在,请说明理由.

分析 (1)由椭圆经过点A($\sqrt{3}$,$\frac{1}{2}$),B(1,$\frac{{\sqrt{3}}}{2}$),列出方程组,求出a,b,c,由此能求出椭圆E的离心率.
(2)椭圆方程为$\frac{{x}^{2}}{4}$+y2=1,设圆心在原点的圆的一条切线为y=kx+t,P(x1,y1),Q(x2,y).由$\left\{\begin{array}{l}{y=kx+t}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$得(1+4k)2x2+8ktx+4t2-4=0,由根的判别式、韦达定理、向量垂直、点到直线距离公式,结合已知条件求出所求的圆为x2+y2=$\frac{4}{5}$.当切线的斜率不存在时,该圆满足条件,从而求出存在圆心在原点的圆x2+y2=$\frac{4}{5}$,使得该圆的任意一条切线与椭圆E恒有两个交点P,Q,且$\overrightarrow{OP}$⊥$\overrightarrow{OQ}$.

解答 解:(1)∵椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A($\sqrt{3}$,$\frac{1}{2}$),B(1,$\frac{{\sqrt{3}}}{2}$).
∴$\left\{\begin{array}{l}{\frac{3}{{a}^{2}}+\frac{1}{4{b}^{2}}=1}\\{\frac{1}{{a}^{2}}+\frac{3}{4{b}^{2}}=1}\end{array}\right.$,解得a2=4,b2=1,c=$\sqrt{3}$,
∴椭圆E的离心率e=$\frac{c}{a}=\frac{\sqrt{3}}{2}$.
(2)由(1)知椭圆方程为$\frac{{x}^{2}}{4}$+y2=1,
①设圆心在原点的圆的一条切线为y=kx+t,P(x1,y1),Q(x2,y).
解方程组$\left\{\begin{array}{l}{y=kx+t}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$得x2+4(kx+t)2=4,即(1+4k)2x2+8ktx+4t2-4=0,
要使切线与椭圆恒有两个交点P,Q,则使△=64k2t2-16(1+4k2)(t2-1)=16(4k2-t2+1)>0
即4k2-t2+1>0,即t2<4k2+1,且$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=-\frac{8kt}{1+4{k}^{2}}}\\{{x}_{1}{x}_{2}=\frac{4{t}^{2}-4}{1+4{k}^{2}}}\end{array}\right.$,
y1y2=(kx1+t)(kx2+t)=k2x1x2+kt(x1+x2)+t2=$\frac{{k}^{2}(4{t}^{2}-4)}{1+4{k}^{2}}$-$\frac{8{k}^{2}{t}^{2}}{1+4{k}^{2}}$+t2=$\frac{{t}^{2}-4{k}^{2}}{1+4{k}^{2}}$,
要使$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,需使x1x2+y1y2=0,即$\frac{4{t}^{2}-4}{1+4{k}^{2}}$+$\frac{{t}^{2}-4{k}^{2}}{1+4{k}^{2}}$=$\frac{5{t}^{2}-4{k}^{2}-4}{1+4{k}^{2}}$=0,
所以5t2-4k2-4=0,即5t2=4k2+4且t2<4k2+1,即4k2+4<20k2+5恒成立.
又因为直线y=kx+t为圆心在原点的圆的一条切线,
所以圆的半径为r=$\frac{|t|}{\sqrt{1+{k}^{2}}}$,r2=$\frac{{t}^{2}}{1+{k}^{2}}$=$\frac{\frac{4}{5}(1+{k}^{2})}{1+{k}^{2}}$=$\frac{4}{5}$,所求的圆为x2+y2=$\frac{4}{5}$.
②当切线的斜率不存在时,切线为x=±$\frac{2}{5}\sqrt{5}$,
与$\frac{{x}^{2}}{4}$+y2=1交于点($\frac{2}{5}\sqrt{5}$,±$\frac{2}{5}\sqrt{5}$)或(-$\frac{2}{5}\sqrt{5}$,±$\frac{2}{5}\sqrt{5}$)满足.
综上,存在圆心在原点的圆x2+y2=$\frac{4}{5}$,使得该圆的任意一条切线与椭圆E恒有两个交点P,Q,且$\overrightarrow{OP}$⊥$\overrightarrow{OQ}$.

点评 本题考查椭圆方程的求法,考查满足条件的圆是否存在的判断与求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、向量垂直、点到直线距离公式、椭圆等知识点的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知实数x,y满足$\left\{\begin{array}{l}{y≥x+2}\\{x+y≤6}\\{x≥1}\end{array}\right.$,则z=2|x-2|+|y|的最小值是(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.图中的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b,i的值分别为8,10,0,则输出的a和i和值分别为(  )
A.2,5B.2,4C.0,4D.0,5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}中,a1=2,且$\frac{{a_{n+1}^2}}{a_n}=4({a_{n+1}}-{a_n})(n∈{N^*})$,则其前9项的和S9=1022.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\sqrt{4-|{ax-2}|}({a≠0})$.
(1)求函数f(x)的定义域;
(2)若当x∈[0,1]时,不等式f(x)≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex-1-$\frac{4a-3}{6x}$,g(x)=$\frac{1}{3}$ax2+$\frac{1}{2}$x-(a-1).
(1)曲线f(x)在x=1处的切线与直线x+2y-1=0垂直,求实数a的值;
(2)当x≥1时,f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知实数x,y满足$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{0≤y≤k}\end{array}\right.$,且z=x+y的最大值为6,则(x+5)2+y2的最小值为(  )
A.5B.3C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题p:?x∈R,tanx>1,命题q:抛物线y=$\frac{1}{3}$x2的焦点到准线的距离为$\frac{1}{6}$,那么下列命题为真命题的是(  )
A.¬pB.(¬p)∨qC.p∧qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,己知四棱锥P-ABCD的底面为矩形,PA⊥底面ABCD,且AB=$\sqrt{2}$,BC=1,点E,F分别为AB,PC中点.
(1)当PA的长度为多少时,EF⊥PD;
(2)在(1)的前提下,求:平面BPC与平面DPC的夹角余弦值.

查看答案和解析>>

同步练习册答案