精英家教网 > 高中数学 > 题目详情
16.已知实数x,y满足$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{0≤y≤k}\end{array}\right.$,且z=x+y的最大值为6,则(x+5)2+y2的最小值为(  )
A.5B.3C.$\sqrt{5}$D.$\sqrt{3}$

分析 作出不等式对应的平面区域,利用线性规划的知识先求出k的值,然后利用目标函数的几何意义,转化求解即可.

解答 解:作出不等式$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{0≤y≤k}\end{array}\right.$,对应的平面区域,
由z=x+y,得y=-x+z
平移直线y=-x+z,由图象可知当直线y=-x+z经过点A时,直线y=-x+z的截距最大,
此时z最大为6.即x+y=6.由$\left\{\begin{array}{l}{x+y=6}\\{x-y=0}\end{array}\right.$得
A(3,3),
∵直线y=k过A,
∴k=3.
(x+5)2+y2的几何意义是可行域内的点与(-5,0)距离的平方,由可行域可知,(-5,0)到直线x+2y=0的距离DP最小.
可得(x+5)2+y2的最小值为:$(\frac{|-5|}{\sqrt{{1}^{2}+{2}^{2}}})^{2}$=5.
故选:A.

点评 本题主要考查线性规划的应用以,利用数形结合是解决线性规划题目的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|0<x≤3,x∈N},B={x|y=$\sqrt{{x}^{2}-1}$},则集合A∩B为(  )
A.{1,2}B.{1,2,3}C.{0,1,2}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左,右焦点为F1,F2,离心率为e.P是椭圆上一点,满足PF2⊥F1F2,点Q在线段PF1上,且$\overrightarrow{{F_1}Q}=2\overrightarrow{QP}$.若$\overrightarrow{{F_1}P}•\overrightarrow{{F_2}Q}$=0,则e2=(  )
A.$\sqrt{2}-1$B.$2-\sqrt{2}$C.$2-\sqrt{3}$D.$\sqrt{5}-2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A($\sqrt{3}$,$\frac{1}{2}$),B(1,$\frac{{\sqrt{3}}}{2}$).
(1)求椭圆E的离心率;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点P,Q,且$\overrightarrow{OP}$⊥$\overrightarrow{OQ}$?若存在,求出该圆的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a+3b=1,求:
(1)9a2+b2,9a2+(b-1)2的最小值;
(2)$\frac{1}{3a}$+$\frac{1}{b}$(a,b>0),$\frac{4}{1-a}$+$\frac{1}{1-3b}$(a,b>0)的最小值;
(3)$\frac{1}{1-{a}^{2}}$+$\frac{1}{1-9{b}^{2}}$(a,b>0),$\frac{{a}^{2}}{1-a}$+$\frac{3{b}^{2}}{1-b}$(a,b>0)的最小值;
(4)$\sqrt{a+1}$+$\sqrt{b+1}$,$\sqrt{1-a}$+$\sqrt{2-6b}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设变量x,y满足$\left\{\begin{array}{l}{x-y≤10}\\{0≤x+y≤20}\\{0≤y≤15}\end{array}\right.$,则2x+3y的最大值为55.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在同一坐标系中,曲线y=($\frac{1}{3}$)x与抛物线y2=x的交点横坐标所在区间为(  )
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,$\frac{1}{2}$)C.($\frac{1}{2}$,$\frac{2}{3}$)D.($\frac{2}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.$\sqrt{x}$(1-$\sqrt{x}$)5的展开式中x2的系数为-10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.计算:|3-i|=$\sqrt{10}$,$\frac{10i}{3-i}$=-1+3i.

查看答案和解析>>

同步练习册答案