精英家教网 > 高中数学 > 题目详情
求函数y=
x2
x+3
在x=2处的切线方程.
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用
分析:欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=2处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.
解答: 解:∵函数y=
x2
x+3

∴y′=
2x(x+3)-x2
(x+3)2

x=2时,y′=
16
25
,y=
4
5

∴函数y=
x2
x+3
在x=2处的切线方程y-
4
5
=
16
25
(x-2),即16x-25y-12=0.
点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元.设f(n)表示前n年的纯利润总和(f(n)=前n年的总收入一前n年的总支出一投资额).
(1)该厂从第几年开始盈利?
(2)若干年后,投资商为开发新项目,对该厂有两种处理方案:①年平均纯利润达到最大时,以48万元出售该厂;②纯利润总和达到最大时,以10万元出售该厂,问哪种方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,a1=1,an=
Sn
n
+2 (n-1)(n∈N*).
(1)求证:数列{an}为等差数列,并分别写出an和Sn关于n的表达式;
(2)是否存在自然数n,使得S1+
S2
2
+
S3
3
+…+
Sn
n
-(n-1)2=2013?若存在,求出n的值;若不存在,请说明理由.
(3)设Cn=
2
n(an+7)
(n∈{N*}),Tn=c1+c2+c3+…+cn(n∈N*),是否存在最大的整数m,使得对任意n∈N*均有Tn
m
32
成立?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+
a
x+1
,a为常数.
(1)若a=
9
2
,求函数f(x)在[1,e]上的值域;(e为自然对数的底数,e≈2.72)
(2)若函数g(x)=f(x)+x在[1,2]上为单调减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的导函数:
①f(x)=x3+log2x;
②f(x)=
cosx
ex

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
①sin213°+cos217°-sin13°cos17°;
②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°
④sin2(-18°)+cos248°-sin(-18°)cos48°
⑤sin2(-25°)+cos255°-sin(-25°)cos55°.
(1)利用计算器求出这个常数;
(2)根据(1)的计算结果,请你写出一个三角恒等式,使得上述五个等式是这个恒等式的特殊情况;
(3)证明你写出的三角恒等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点A(2,3),且离心率e=
1
2

(1)求椭圆C的标准方程;
(2)是否存在过点B(0,-4)的直线l交椭圆于不同的两点M、N,且满足
OM
ON
=
16
7
(其中点O为坐标原点),若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-2:矩阵与变换
若二阶矩阵M满足M
12
34
=
710
46

(Ⅰ)求二阶矩阵M;
(Ⅱ)把矩阵M所对应的变换作用在曲线3x2+8xy+6y2=1上,求所得曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在斜二测画法中,一个平面图形的直观图是边长为2的正三角形,则其面积为
 

查看答案和解析>>

同步练习册答案