ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬a1=1£¬an=
Sn
n
+2 £¨n-1£©£¨n¡ÊN*£©£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{an}ΪµÈ²îÊýÁУ¬²¢·Ö±ðд³öanºÍSn¹ØÓÚnµÄ±í´ïʽ£»
£¨2£©ÊÇ·ñ´æÔÚ×ÔÈ»Êýn£¬Ê¹µÃS1+
S2
2
+
S3
3
+¡­+
Sn
n
-£¨n-1£©2=2013£¿Èô´æÔÚ£¬Çó³önµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÉèCn=
2
n(an+7)
£¨n¡Ê{N*}£©£¬Tn=c1+c2+c3+¡­+cn£¨n¡ÊN*£©£¬ÊÇ·ñ´æÔÚ×î´óµÄÕûÊým£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*¾ùÓÐTn£¾
m
32
³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ömµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÊýÁеÄÇóºÍ,µÈ²îÊýÁеÄÐÔÖÊ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ,²»µÈʽµÄ½â·¨¼°Ó¦ÓÃ
·ÖÎö£º£¨1£©°ÑµÝÍÆÊ½±äÐεõ½Sn=nan-2n£¨n-1£©£¨n¡ÊN*£©£¬½áºÏn¡Ý2ʱan=Sn-Sn-1µÃµ½ÊýÁÐ{an}ÊÇÒÔ1ΪÊ×ÏÒÔ4Ϊ¹«²îµÄµÈ²îÊýÁУ¬½øÒ»²½Çó³öanºÍSn£»
£¨2£©°ÑSn´úÈëS1+
S2
2
+
S3
3
+¡­+
Sn
n
-£¨n-1£©2=2013»¯¼ò¼´¿ÉÇóµÃnµÄÖµ£»
£¨3£©°Ñan´úÈëCn=
2
n(an+7)
£¬ÕûÀíºóÇóµÃTn=c1+c2+c3+¡­+cn£¬ÔÙÓÉTn£¾
m
32
³ÉÁ¢ÇóµÃ×î´óµÄÕûÊým£®
½â´ð£º £¨1£©Ö¤Ã÷£ºÓÉan=
Sn
n
+2£¨n-1£©£¬
µÃSn=nan-2n£¨n-1£©£¨n¡ÊN*£©£®
µ±n¡Ý2ʱ£¬an=Sn-Sn-1=nan-£¨n-1£©an-1-4£¨n-1£©£¬
¼´an-an-1=4£¬
¹ÊÊýÁÐ{an}ÊÇÒÔ1ΪÊ×ÏÒÔ4Ϊ¹«²îµÄµÈ²îÊýÁУ®
ÓÚÊÇ£¬an=4n-3£¬
Sn=
(a1+an)n
2
=2n2-n £¨n¡ÊN*£©£»
£¨2£©½â£ºÓÉSn=nan-2n£¨n-1£©£¬µÃ
Sn
n
=2n-1 £¨n¡ÊN*£©£¬
ÓÖS1+
S2
2
+
S3
3
+¡­+
Sn
n
-£¨n-1£©2=1+3+5+7+¡­+£¨2n-1£©-£¨n-1£©2=n2-£¨n-1£©2=2n-1£®
Áî2n-1=2013£¬µÃn=1007£¬¼´´æÔÚÂú×ãÌõ¼þµÄ×ÔÈ»Êýn=1007£»
£¨3£©½â£º¡ßCn=
2
n(an+7)
=
1
n(2n+2)
=
1
2
(
1
n
-
1
n+1
)
£¬
¡àTn=c1+c2+c3+¡­+cn
=
1
2
[(1-
1
2
)+(
1
2
-
1
3
)+¡­+(
1
n
-
1
n+1
)]

=
1
2
(1-
1
n+1
)=
n
2(n+1)
£®
ҪʹTn£¾
m
32
×ܳÉÁ¢£¬Ðè
m
32
£¼T1=
1
4
³ÉÁ¢£¬¼´m£¼8ÇÒm¡ÊZ£¬
¹ÊÊʺÏÌõ¼þµÄmµÄ×î´óֵΪ7£®
µãÆÀ£º±¾Ì⿼²éÁËÊýÁеÝÍÆÊ½£¬¿¼²éÁ˵ȲîÊýÁеÄÐÔÖÊ£¬ÑµÁ·ÁË´íλÏà¼õ·¨ÇóÊýÁеĺͣ¬¿¼²éÁËÀûÓò»µÈʽºã³ÉÁ¢Çó²ÎÊýµÄȡֵ·¶Î§£¬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬¶ÔÓÚÒ»ÌõÕÛÏßC£ºA1-A2-¡­-An£¬ÈôÄÜÔÙ×÷³öÒ»ÌõÕÛÏßC¡ä£ºA1-B2-B3-¡­-Bn-1-An£¬Ê¹µÃA1B2¡ÍA1A2£¬B2B3¡ÍA2A3£¬¡­£¬Bn-1An¡ÍAn-1An£¨ÆäÖÐA1£¬A2£¬A3£¬¡­£¬An£¬B2£¬B3£¬¡­£¬Bn-1¶¼ÊÇÕûµã£©£¬Ôò³ÆÕÛÏßC¡äÊÇÕÛÏßCµÄÒ»Ìõ¹²éîÕÛÏߣ¨ËµÃ÷£ººá¡¢×Ý×ø±ê¾ùΪÕûÊýµÄµã³ÉΪÕûµã£©£®
£¨¢ñ£©Çë·Ö±ðÅжÏͼ£¨1£©£¬£¨2£©ÖУ¬ÐéÕÛÏßÊÇ·ñÊÇʵÕÛÏßµÄÒ»Ìõ¸ö£¬¹²éîÕÛÏߣ»

£¨¢ò£©ÊÔÅжÏÃüÌâ¡°¶ÔÈÎÒâµÄn¡ÊNÇÒn£¾2£¬×Ü´æÔÚÒ»ÌõÕÛÏßC£ºA1-A2-¡­-AnÓй²éîÕÛÏß¡±µÄÕæ¼Ù£¬²¢¾ÙÀý˵Ã÷£»
£¨¢ó£©Èçͼ£¨3£©£¬ÕÛÏßC£ºA1-A2-A3-A4£¬ÆäÖÐA1£¨0£¬0£©£¬A2£¨3£¬1£©£¬A3£¨6£¬0£©£¬A4£¨9£¬1£©£®ÇóÖ¤£ºÕÛÏßCÎÞ¹²éîÕÛÏߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÀûÓú¯ÊýµÄµ¥µ÷ÐԱȽϴóС£º
£¨1£©sin508¡ãÓësin144¡ã£»         
£¨2£©cos760¡ãÓëcos£¨-770¡ã£©
£¨3£©tan£¨-
¦Ð
5
£©Óëtan£¨-
3¦Ð
7
£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏß¶ÎPQµÄ¶ËµãQµÄ×ø±êÊÇ£¨4£¬3£©£¬¶ËµãPÔÚÔ²x2+y2+2x-3=0ÉÏÔ˶¯£¬ÇóÏß¶ÎPQµÄÖеãMµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ò»¸öÅ©¼¼Õ¾ÎªÁË¿¼²ìijÖÖÂóË볤µÄ·Ö²¼Çé¿ö£¬ÔÚÒ»¿éÊÔÑ鵨Àï³éÈ¡ÁË100¸öÂóË룬Á¿µÃ³¤¶ÈÈçÏ£¨µ¥Î»£ºcm£©£º
6.5¡¡6.4¡¡6.7¡¡5.8¡¡5.9¡¡5.9¡¡5.2¡¡4.0¡¡5.4¡¡4.6
5.8¡¡5.5¡¡6.0¡¡6.5¡¡5.1¡¡6.5¡¡5.3¡¡5.9¡¡5.5¡¡5.8
6.2¡¡5.4¡¡5.0¡¡5.0¡¡6.8¡¡6.0¡¡5.0¡¡5.7¡¡6.0¡¡5.5
6.8¡¡6.0¡¡6.3¡¡5.5¡¡5.0¡¡6.3¡¡5.2¡¡6.0¡¡7.0¡¡6.4
6.4¡¡5.8¡¡5.9¡¡5.7¡¡6.8¡¡6.6¡¡6.0¡¡6.4¡¡5.7¡¡7.4
6.0¡¡5.4¡¡6.5¡¡6.0¡¡6.8¡¡5.8¡¡6.3¡¡6.0¡¡6.3¡¡5.6
5.3¡¡6.4¡¡5.7¡¡6.7¡¡6.2¡¡5.6¡¡6.0¡¡6.7¡¡6.7¡¡6.0
5.6¡¡6.2¡¡6.1¡¡5.3¡¡6.2¡¡6.8¡¡6.6¡¡4.7¡¡5.7¡¡5.7
5.8¡¡5.3¡¡7.0¡¡6.0¡¡6.0¡¡5.9¡¡5.4¡¡6.0¡¡5.2¡¡6.0
6.3¡¡5.7¡¡6.8¡¡6.1¡¡4.5¡¡5.6¡¡6.3¡¡6.0¡¡5.8¡¡6.3
¸ù¾ÝÉÏÃæµÄÊý¾ÝÁгöƵÂÊ·Ö²¼±í¡¢»æ³öƵÂÊ·Ö²¼Ö±·½Í¼£¬²¢¹À¼Æ³¤¶ÈÔÚ5.75¡«6.05cmÖ®¼äµÄÂóËëÔÚÕâÅúÂóËëÖÐËùÕ¼µÄ°Ù·Ö±È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÈñ½Ç¡÷ABCÖУ¬ÏòÁ¿
m
=£¨2sinB£¬
3
£©£¬
n
=£¨2cos2
B
2
-1£¬cos2B£©£¬ÇÒ
m
¡Í
n
£¬
£¨¢ñ£©ÇóB£»
£¨¢ò£©Çóf£¨x£©=sin2xcosB-cos2xsinBµÄµ¥µ÷¼õÇø¼ä£»
£¨¢ó£©ÈôsinC=
2
3
£¬ÇócosA£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏòÁ¿
a
=£¨cos
3
2
x£¬sin
3
2
x£©£¬
b
=£¨cos
x
2
£¬-sin
x
2
£©£¬ÇÒx¡Ê[0£¬
¦Ð
2
]£¬
£¨1£©Çó
a
b
¼°|
a
+
b
|£»
£¨2£©Çóº¯Êýf£¨x£©=
a
b
-2|
a
+
b
|µÄ×îСֵ£»
£¨3£©Èôf£¨x£©=
a
b
-¦Ë|
a
+
b
|µÄ×îСֵÊÇ-
3
2
£¬ÇóʵÊý¦ËµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Çóº¯Êýy=
x2
x+3
ÔÚx=2´¦µÄÇÐÏß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

5310±»8³ýÓàÊýÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸