精英家教网 > 高中数学 > 题目详情
10.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,椭圆E和抛物线y2=$\frac{9}{4}$x交于M,N两点,且直线MN恰好通过椭圆E的右焦点F2
(1)求椭圆E的标准方程;
(2)已知椭圆E的左焦点为F1,左、右顶点分别为A,B,经过点F1的直线l与椭圆E交于C,D两点,记△ABD与△ABC的面积分别为S1,S2,求|S1-S2|的最大值.

分析 (1)不妨设M$(c,\frac{{b}^{2}}{a})$,则$\frac{{b}^{2}}{a}$=$\frac{3}{2}\sqrt{c}$,又$\frac{c}{a}=\frac{1}{2}$,a2=b2+c2,联立解得椭圆E的标准方程.
(2)当直线l的斜率不存在时,直线l的方程为x=-1.此时D$(-1,\frac{3}{2})$,C$(-1,-\frac{3}{2})$,△ABD与△ABC的面积相等.则|S1-S2|=0.当直线l的斜率存在时,设直线l的方程为y=k(x+1).(k≠0),设C(x1,y1),D(x2,y2),y1y2<0.联立$\left\{\begin{array}{l}{y=k(x+1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,化为:(3+4k2)x2+8k2x+4k2-12=0,|S1-S2|=2||y1|-|y2||=2|y2+y1|=2|k(x1+x2)+2k|=$\frac{12|k|}{3+4{k}^{2}}$.利用基本不等式的性质即可堵车.

解答 解:(1)不妨设M$(c,\frac{{b}^{2}}{a})$,则$\frac{{b}^{2}}{a}$=$\frac{3}{2}\sqrt{c}$,又$\frac{c}{a}=\frac{1}{2}$,a2=b2+c2,联立解得a=2,c=1,b2=3.
∴椭圆E的标准方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.
(2)当直线l的斜率不存在时,直线l的方程为x=-1.此时D$(-1,\frac{3}{2})$,C$(-1,-\frac{3}{2})$,△ABD与△ABC的面积相等.
则|S1-S2|=0.当直线l的斜率存在时,设直线l的方程为y=k(x+1).(k≠0),设C(x1,y1),D(x2,y2),y1y2<0.
联立$\left\{\begin{array}{l}{y=k(x+1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,化为:(3+4k2)x2+8k2x+4k2-12=0,△>0,x1+x2=$\frac{-8{k}^{2}}{3+4{k}^{2}}$,x1•x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$,
△ABD与△ABC的面积相等.
则|S1-S2|=2||y1|-|y2||=2|y2+y1|=2|k(x1+x2)+2k|=$\frac{12|k|}{3+4{k}^{2}}$.
k≠0时,$\frac{12|k|}{3+4{k}^{2}}$=$\frac{12}{\frac{3}{|k|}+4|k|}$≤$\frac{12}{2\sqrt{3×4}}$=$\sqrt{3}$.当且仅当k=$±\frac{\sqrt{3}}{2}$时取等号,
∴|S1-S2|的最大值为$\sqrt{3}$.

点评 本题考查了椭圆与抛物线的标准方程及其性质、直线与椭圆相交弦长问题、一元二次方程的根与系数的关系、基本不等式的性质、分类讨论方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.为了响应厦门市政府“低碳生活,绿色出行”的号召,思明区委文明办率先全市发起“少开一天车,呵护厦门蓝”绿色出行活动,“从今天开始,从我做起,力争每周至少一天不开车,上下班或公务活动带头选择步行、骑车或乘坐公交车,鼓励拼车…”铿锵有力的话语,传递了低碳生活、绿色出行的理念.某机构随机调查了本市500名成年市民某月的骑车次数,统计如下:


[0,10)[10,20)[20,30)[30,40)[40,50)[50,60]
18岁至30岁61420324048
31岁至44岁4620284042
45岁至59岁221833371911
60岁及以上1513101255
联合国世界卫生组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老年人.记本市一个年满18岁的青年人月骑车的平均次数为μ.以样本估计总体.
(Ⅰ)估计μ的值;
(Ⅱ)在本市老年人或中年人中随机访问3位,其中月骑车次数超过μ的人数记为ξ,求ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的函数f(x)满足:f(x+1)=$\sqrt{f(x){-f}^{2}(x)}+\frac{1}{2}$,数列{an}满足an=f2(n)-f(n),n∈N*,若其前n项和为-$\frac{35}{16}$,则n的值为(  )
A.16B.17C.18D.19

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,若2B=A+C,求tanA+tanC-$\sqrt{3}$tanAtanC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图所示的程序框图,若输入如下四个函数:①f(x)=sinx,②f(x)=cosx,③f(x)=$\frac{1}{x}$,④f(x)=lg$\frac{1-x}{1+x}$,则输出的函数是(  )
A.f(x)=sinxB.f(x)=cosxC.f(x)=$\frac{1}{x}$D.f(x)=lg$\frac{1-x}{1+x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,E上一点P到右焦点距离的最小值为1.
(1)求椭圆E的方程;
(2)过点(0,2)且倾斜角为60°的直线交椭圆E于A,B两点,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线$\frac{x^2}{3}-\frac{y^2}{2}=1$的左,右焦点分别为F1,F2,O为坐标原点,圆O是以F1F2为直径的圆,直线$l:\sqrt{2}x+\sqrt{3}y+t=0$与圆O有公共点.则实数t的取值范围是(  )
A.$[{-2\sqrt{2},2\sqrt{2}}]$B.[-4,4]C.[-5,5]D.$[{-5\sqrt{2},5\sqrt{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率是$\frac{{\sqrt{3}}}{2}$,且直线l1:$\frac{x}{a}+\frac{y}{b}=1$被椭圆C截得的弦长为$\sqrt{5}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l1与圆D:x2+y2-6x-4y+m=0相切:
(i)求圆D的标准方程;
(ii)若直线l2过定点(3,0),与椭圆C交于不同的两点E、F,与圆D交于不同的两点M、N,求|EF|•|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在条件$\left\{\begin{array}{l}{x+y-3≥0}\\{x-2y+3≤0}\\{2x-y-3≤0}\end{array}\right.$下,目标函数z=x+2y的最小值为4.

查看答案和解析>>

同步练习册答案