精英家教网 > 高中数学 > 题目详情
5.执行如图所示的程序框图,若输入如下四个函数:①f(x)=sinx,②f(x)=cosx,③f(x)=$\frac{1}{x}$,④f(x)=lg$\frac{1-x}{1+x}$,则输出的函数是(  )
A.f(x)=sinxB.f(x)=cosxC.f(x)=$\frac{1}{x}$D.f(x)=lg$\frac{1-x}{1+x}$

分析 由已知中的程序框图,可得该程序输出的函数即是奇函数,也是减函数,进而得到答案.

解答 解:由已知中的程序框图,可得该程序输出的函数即是奇函数,也是减函数,
A中,f(x)=sinx是奇函数,但在R上不是减函数,
B中,f(x)=cosx不是奇函数,在R上也不是减函数,
C中,f(x)=$\frac{1}{x}$是奇函数,但在R上不是减函数,
D中,f(x)=lg$\frac{1-x}{1+x}$是奇函数,且是定义域(-1,1)上的是减函数,
故选:C

点评 本题以程序框图为载体,考查了函数的单调性,函数的奇偶性,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知P,Q为动直线y=m(0<m<$\frac{{\sqrt{2}}}{2}$)与y=sinx和y=cosx在区间$[0,\frac{π}{2}]$上的左,右两个交点,P,Q在x轴上的投影分别为S,R.当矩形PQRS面积取得最大值时,点P的横坐标为x0,则(  )
A.${x_0}<\frac{π}{8}$B.${x_0}=\frac{π}{8}$C.$\frac{π}{8}<{x_0}<\frac{π}{6}$D.${x_0}>\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设复数z满足关系z•i=-1+$\frac{3}{4}$i,那么z=$\frac{3}{4}$+i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若y=f(x)图象有两条对称轴x=a,x=b,(a≠b),则y=f(x)必是周期函数,且一周期为2|a-b|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设二次函数f(x)=(k-4)x2+kx(k∈R),对任意实数x,有f(x)≤6x+2恒成立;正项数列{an}满足an+1=f(an).数列{bn},{cn}分别满足|bn+1-bn|=2,cn+12=4cn2
(1)若数列{bn},{cn}为递增数列,且b1=1,c1=-1,求{bn},{cn}的通项公式;
(2)在(1)的条件下,若g(n)=$\frac{{b}_{n}}{f(n)-\frac{1}{2}}$(n≥1,n∈N*),求g(n)的最小值;
(3)已知a1=$\frac{1}{3}$,是否存在非零整数λ,使得对任意n∈N*,都有log3($\frac{1}{\frac{1}{2}-{a}_{1}}$)+log3($\frac{1}{\frac{1}{2}-{a}_{2}}$)+…+log3($\frac{1}{\frac{1}{2}-{a}_{n}}$)>-1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,椭圆E和抛物线y2=$\frac{9}{4}$x交于M,N两点,且直线MN恰好通过椭圆E的右焦点F2
(1)求椭圆E的标准方程;
(2)已知椭圆E的左焦点为F1,左、右顶点分别为A,B,经过点F1的直线l与椭圆E交于C,D两点,记△ABD与△ABC的面积分别为S1,S2,求|S1-S2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=(x-2)lnx+2x-3,x≥1.
(1)试判断函数f(x)的零点个数;
(2)若函数g(x)=(x-a)lnx+$\frac{a(x-1)}{x}$在[1,+∞)上为增函数,求整数a的最大值.(可能要用的数据:ln1.59≈0.46;ln1.60≈0.47;$\frac{400}{41}$≈9.76)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,E上一点P到右焦点距离的最小值为1.
(1)求椭圆E的方程;
(2)过点(0,2)的直线交椭圆E于不同的两点A,B,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Pn,且a1=b1=1.
(1)设a3=b2,a4=b3,求数列{an+bn}的通项公式;
(2)在(1)的条件下,且an≠an+1,求满足Sn=Pm的所有正整数n、m;
(3)若存在正整数m(m≥3),且am=bm>0,试比较Sm与Pm的大小,并说明理由.

查看答案和解析>>

同步练习册答案