精英家教网 > 高中数学 > 题目详情
14.设复数z满足关系z•i=-1+$\frac{3}{4}$i,那么z=$\frac{3}{4}$+i.

分析 根据复数的代数形式运算法则,求出z即可.

解答 解:复数z满足关系z•i=-1+$\frac{3}{4}$i,
∴z=$\frac{-1+\frac{3}{4}i}{i}$=$\frac{-i+{\frac{3}{4}i}^{2}}{{i}^{2}}$=$\frac{3}{4}$+i.
故答案为:$\frac{3}{4}$+i.

点评 本题考查了复数代数形式的运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知集合S={1,2},设S的真子集有m个,则m=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.为了竖一块广告牌,要制造三角形支架,如图,要求∠ACB=60°,BC的长度大于1米,且AC比AB长0.5米,为了稳固广告牌,要求AC越短越好,则AC最短为(  )
A.(1+$\frac{\sqrt{3}}{2}$)米B.2米C.(1+$\sqrt{3}$)米D.(2+$\sqrt{3}$)米

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{1}{3}$x3-ax2+3x+b(a,b∈R).
(Ⅰ)当a=2,b=0时,求f(x)在[0,3]上的值域.
(Ⅱ)对任意的b,函数g(x)=|f(x)|-$\frac{2}{3}$的零点不超过4个,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow{a}$=(-1,3)与$\overrightarrow{b}$=(0,6),求5$\overrightarrow{a}$-2$\overrightarrow{b}$的坐标,并求|5$\overrightarrow{a}$-2$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的函数f(x)满足:f(x+1)=$\sqrt{f(x){-f}^{2}(x)}+\frac{1}{2}$,数列{an}满足an=f2(n)-f(n),n∈N*,若其前n项和为-$\frac{35}{16}$,则n的值为(  )
A.16B.17C.18D.19

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC中,2$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,求$\frac{{S}_{△OBC}}{{S}_{△ABC}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图所示的程序框图,若输入如下四个函数:①f(x)=sinx,②f(x)=cosx,③f(x)=$\frac{1}{x}$,④f(x)=lg$\frac{1-x}{1+x}$,则输出的函数是(  )
A.f(x)=sinxB.f(x)=cosxC.f(x)=$\frac{1}{x}$D.f(x)=lg$\frac{1-x}{1+x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{ax,x<0}\end{array}\right.$若方程f(-x)=f(x)有五个不同的根,则实数a的取值范围为(  )
A.(-∞,-e)B.(-∞,-1)C.(1,+∞)D.(e,+∞)

查看答案和解析>>

同步练习册答案