精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\frac{1}{3}$x3-ax2+3x+b(a,b∈R).
(Ⅰ)当a=2,b=0时,求f(x)在[0,3]上的值域.
(Ⅱ)对任意的b,函数g(x)=|f(x)|-$\frac{2}{3}$的零点不超过4个,求a的取值范围.

分析 (Ⅰ)当a=2,b=0时,求得f(x),求导,利用导数求得f(x)单调区间,根据函数的单调性即可求得[0,3]上的值域;
(Ⅱ)由f′(x)=x2-2ax+3,则△=4a2-12,根据△的取值范围,利用韦达定理及函数的单调性,即可求得a的取值范围.

解答 解:(Ⅰ)当a=2,b=0时,f(x)=$\frac{1}{3}$x3-2x2+3x,求导,f′(x)=x2-4x+3=(x-1)(x-3),
当x∈(0,1)时,f′(x)>0,故函数f(x)在(0,1)上单调递增,
当x∈(1,3)时,f′(x)<0,故函数f(x)在(1,3)上单调递减,
由f(0)=f(0)=0,f(1)=$\frac{4}{3}$,
∴f(x)在[0,3]上的值域为[0,$\frac{4}{3}$];
(Ⅱ)由f′(x)=x2-2ax+3,则△=4a2-12,
①当△≤0,即a2≤3时,f′(x)≥0,f(x)在R上单调递增,满足题意,
②当△>0,即a2>3时,方程f′(x)=0有两根,设两根为x1,x2,且x1<x2,则x1+x2=2a,x1x2=3,
则f(x)在(-∞,x1),(x2,+∞)上单调递增,
在(x1,x2)上单调递减,
由题意可知丨f(x1)-f(x2)丨≤$\frac{4}{3}$,
∴丨$\frac{{x}_{1}^{3}-{x}_{2}^{3}}{3}$-a(x12-x22)+3(x1-x2)丨≤$\frac{4}{3}$,
化简得:$\frac{4}{3}$(a2-3)${\;}^{\frac{3}{2}}$≤$\frac{4}{3}$,解得:3<a2≤4,
综合①②,可得a2≤4,
解得:-2≤a≤2.
a的取值范围[-2.2].

点评 本题考查导数的综合应用,考查利用导数求函数的单调性及值域,考查分类讨论思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.“a+b=1”是“直线x+y+1=0与圆(x-a)2+(y-b)2=2相切”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知P,Q为动直线y=m(0<m<$\frac{{\sqrt{2}}}{2}$)与y=sinx和y=cosx在区间$[0,\frac{π}{2}]$上的左,右两个交点,P,Q在x轴上的投影分别为S,R.当矩形PQRS面积取得最大值时,点P的横坐标为x0,则(  )
A.${x_0}<\frac{π}{8}$B.${x_0}=\frac{π}{8}$C.$\frac{π}{8}<{x_0}<\frac{π}{6}$D.${x_0}>\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知i是虚数单位,复数z=$\frac{1}{2+i}$,则z•$\overline{z}$=(  )
A.25B.5C.$\frac{1}{25}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知某几何体的三视图如图所示,则该几何体的表面积为2+2$\sqrt{5}$,体积为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.(1+x+x2)(1-x)10的展开式中,x10的系数为36.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设复数z满足关系z•i=-1+$\frac{3}{4}$i,那么z=$\frac{3}{4}$+i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若y=f(x)图象有两条对称轴x=a,x=b,(a≠b),则y=f(x)必是周期函数,且一周期为2|a-b|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,E上一点P到右焦点距离的最小值为1.
(1)求椭圆E的方程;
(2)过点(0,2)的直线交椭圆E于不同的两点A,B,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范围.

查看答案和解析>>

同步练习册答案