精英家教网 > 高中数学 > 题目详情
20.设二次函数f(x)=(k-4)x2+kx(k∈R),对任意实数x,有f(x)≤6x+2恒成立;正项数列{an}满足an+1=f(an).数列{bn},{cn}分别满足|bn+1-bn|=2,cn+12=4cn2
(1)若数列{bn},{cn}为递增数列,且b1=1,c1=-1,求{bn},{cn}的通项公式;
(2)在(1)的条件下,若g(n)=$\frac{{b}_{n}}{f(n)-\frac{1}{2}}$(n≥1,n∈N*),求g(n)的最小值;
(3)已知a1=$\frac{1}{3}$,是否存在非零整数λ,使得对任意n∈N*,都有log3($\frac{1}{\frac{1}{2}-{a}_{1}}$)+log3($\frac{1}{\frac{1}{2}-{a}_{2}}$)+…+log3($\frac{1}{\frac{1}{2}-{a}_{n}}$)>-1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,说明理由.

分析 (1)由题意,数列{bn},{cn}为递增数列,即可求出{bn},{cn}的通项公式
(2)由题意可得,k-4<0,且判别式(k-6)2+8(k-4)≤0,解不等式可得k=2,可得f(x)的解析式,可得f(n)=-2n2+2n,代值计算即可求出g(n)
的表达式,根据g(n)=$\frac{2}{1-2n}$为关于n的单调递增函数,即可求出最小值.
(3)假设存在非零整数λ.运用构造数列,结合等比数列的定义和通项公式和求和公式,化简所求不等式,即为2n-1>(-1)n-1λ恒成立,讨论n为奇数和偶数,即可得到所求.

解答 解:(1)数列{bn}为递增数列,则|bn+1-bn|=bn+1-bn=2,
∴{bn}为公差d=2的等差数列b1=1.
∴bn=1+(n-1)×2=2n-1(n∈N*)
由cn+12=4cn2
∴$\frac{{C}_{n+1}^{2}}{{C}_{n}^{2}}$=4
又∵数列{cn}为递增数列,
∴$\frac{{c}_{n+1}}{{c}_{n}}$=2,
∴数列{cn} 公比q=2的等比数列,首先c1=-1,
∴cn=(-1)•2n-1=-2n-1,(n∈N*)
(2)对任意实数x,有f(x)≤6x+2恒成立,
即为(k-4)x2+(k-6)x-2≤0,
k-4<0,且判别式(k-6)2+8(k-4)≤0,即为k2-4k+4≤0,
即(k-2)2≤0,解得k=2,
即有f(x)=-2x2+2x,
∴f(n)=-2n2+2n,
∴g(n)=$\frac{{b}_{n}}{f(n)-\frac{1}{2}}$=$\frac{2n-1}{-2{n}^{2}+2n-\frac{1}{2}}$=$\frac{4n-2}{-4{n}^{2}+4n-1}$=2•$\frac{2n-1}{(1-2n)(2n-1)}$=$\frac{2}{1-2n}$
∴g(n)=$\frac{2}{1-2n}$为关于n的单调递增函数,又∵n≥1.
∴g(n)min=g(1)=$\frac{2}{1-2}$=-2
(3)由(2)得f(x)=-2x2+2x=-2(x-$\frac{1}{2}$)2+$\frac{1}{2}$
∵an+1=f(an),
又∵f(x)≤$\frac{1}{2}$,
∴正项数列{an}满足an∈(0,$\frac{1}{2}$]
令bn=$\frac{1}{2}$-an,则bn+1=$\frac{1}{2}$-an+1=$\frac{1}{2}$-(-2an2+2an)=2($\frac{1}{2}$-an2
∴lgbn+1=lg2($\frac{1}{2}$-an2=lg2+2lg($\frac{1}{2}$-an)=lg2+2lgbn
∴lgbn+1+lg2=2(lg2+lgbn),
∵lg2+lgb1=lg($\frac{1}{2}$-$\frac{1}{3}$)+lg2=lg$\frac{1}{3}$
∴lg2+lgbn=(lg$\frac{1}{3}$)•2n-1
∴lg2bn=lg($\frac{1}{3}$)${\;}^{{2}^{n-1}}$,
∴bn=$\frac{1}{2}$•($\frac{1}{3}$)${\;}^{{2}^{n-1}}$,
∴log3($\frac{1}{\frac{1}{2}-{a}_{1}}$)+log3($\frac{1}{\frac{1}{2}-{a}_{2}}$)+…+log3($\frac{1}{\frac{1}{2}-{a}_{n}}$)=log32•${3}^{{2}^{0}}$+log32•3${\;}^{{2}^{1}}$+…+log32•3${\;}^{{2}^{n-1}}$
=nlog32+$\frac{{2}^{n}(1-{2}^{n})}{1-2}$=nlog32+2n-1,
要证2n+nlog32-1>-1+(-1)n-1•2+nlog32恒成立
即证2n>(-1)n-12λ恒成立
∴2n>(-1)n-12λ恒成立
①当n为奇数时,即λ<2n-1恒成立,当且仅当n=1时,2n-1有最小值1为.∴λ<1;
②当n为偶数时,即λ>-2n-1恒成立,当且仅当n=2时,有最大值-2为.∴λ>-2,
所以,对任意n∈N*,有-2<λ<1.又λ为非零整数,
∴λ=-1.

点评 本题考查二次函数的解析式和值域的求法,同时考查等比数列的定义和通项公式,考查不等式的恒成立问题转化为求最值问题,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知平面α⊥平面β,α∩β=l,直线m?α,直线n?β,且m⊥n,有以下四个结论:
①若n∥l,则m⊥β
②若m⊥β,则n∥l
③m⊥β和n⊥α同时成立          
④m⊥β和n⊥α中至少有一个成立
其中正确的是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow{a}$=(-1,3)与$\overrightarrow{b}$=(0,6),求5$\overrightarrow{a}$-2$\overrightarrow{b}$的坐标,并求|5$\overrightarrow{a}$-2$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC中,2$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,求$\frac{{S}_{△OBC}}{{S}_{△ABC}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知在△ABC中,AB=AC=6,∠BAC=120°,D是BC边上靠近点B的四等分点,F是AC边的中点,若点G是△ABC的重心,则$\overrightarrow{GD}$•$\overrightarrow{AF}$=-$\frac{21}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图所示的程序框图,若输入如下四个函数:①f(x)=sinx,②f(x)=cosx,③f(x)=$\frac{1}{x}$,④f(x)=lg$\frac{1-x}{1+x}$,则输出的函数是(  )
A.f(x)=sinxB.f(x)=cosxC.f(x)=$\frac{1}{x}$D.f(x)=lg$\frac{1-x}{1+x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点与它的一个顶点的连线构成等腰直角三角形,直线x+y=0与以椭圆C的右顶点为圆心,以2b为半径的圆相交所得的弦长为2$\sqrt{3}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设过椭圆C右焦点F2的直线l与椭圆交于点P、Q,若以OP,OQ为邻边的平行四边形是矩形,求满足该条件的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设△ABC的面积为S1,它的外接圆面积为S2,若△ABC的三个内角大小满足A:B:C=3:4:5,则$\frac{{S}_{1}}{{S}_{2}}$的值为(  )
A.$\frac{25}{12π}$B.$\frac{25}{24π}$C.$\frac{3+\sqrt{3}}{2π}$D.$\frac{3+\sqrt{3}}{4π}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若实数x、y满足$\left\{\begin{array}{l}{-2x+1≤y≤2x-1}\\{0<x≤3}\end{array}\right.$,则x-2y的取值范围是[-7,13].

查看答案和解析>>

同步练习册答案