精英家教网 > 高中数学 > 题目详情
设F1、F2是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2最小内角的大小为30°,则双曲线C的渐近线方程是(  )
A、x±
2
y=0
B、
2
x±y=0
C、x±2y=0
D、2x±y=0
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:设|PF1|>|PF2|,由已知条件求出|PF1|=4a,|PF2|=2a,e=
3
,进而求出b=
2
a
,由此能求出双曲线C:
x2
a2
-
y2
b2
=1的渐近线方程.
解答: 解:设|PF1|>|PF2|,则|PF1|-|PF2|=2a,
又|PF1|+|PF2|=6a,解得|PF1|=4a,|PF2|=2a.
则∠PF1F2是△PF1F2的最小内角为30°,
∴|PF2|2=|PF1|2+|F1F2|2-2|PF1|•|F1F2|cos30°,
∴(2a)2=(4a)2+(2c)2-2×4a×2c×
3
2

同时除以a2,化简e2-2
3
e+3=0,
解得e=
3
,∴c=
3
a

∴b=
3a2-a2
=
2
a

∴双曲线C:
x2
a2
-
y2
b2
=1的渐近线方程为y=±
b
a
x
2
x

2
x±y
=0.
故选:B.
点评:本题考查双曲线的渐近线方程的求法,是中档题,解题时要认真审题,要熟练掌握双曲线的简单性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线l过点A(2,2),且与直线x-y-4=0、x轴围成等腰三角形,则这样的直线的条数共
 
条.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:a≥1;命题q:关于x的实系数方程x2-2
2
x+a=0有虚数解,则p是q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2sin(
π
6
-2x)(其中0≤x≤π)为增函数的区间是(  )
A、(0,
π
3
B、(
π
12
12
C、(
π
3
6
D、(
6
,π)

查看答案和解析>>

科目:高中数学 来源: 题型:

设x>0,y>0,且2x+y=6,则9x+3y有(  )
A、最大值27
B、最小值27
C、最大值54
D、最小值54

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,2)在椭圆
x2
16
+
y2
12
=1内,点F的坐标为(2,0),P为椭圆上一点,试求当|PA|+2|PF|取得最小值时P点的坐标,并求出|PA|+2|PF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB为圆O的直径,点E、F在圆O上,矩形ABCD所在平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求证:AF⊥平面CBF;
(2)点G在线段CE上运动,当二面角O-AF-G的平面角的正弦值为
2
3
61
时,
①问点G的位置;
②求直线AG与平面CBE所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:集合A={x|2a≤x≤a+3},B={x|x<-1或x>5}.若A∪B=R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x、y满足x2+y2-2x+4y=0,则x-3y的最大值是
 

查看答案和解析>>

同步练习册答案