精英家教网 > 高中数学 > 题目详情
设向量
a
b
互相垂直,向量
c
与它们的夹角是60°,且|
a
|=5,|
b
|=3,|
c
|=8,则(
a
+3
c
)•(3
b
-2
a
)=
 
考点:数量积表示两个向量的夹角,平面向量数量积的运算
专题:平面向量及应用
分析:根据题意,可先求出
a
b
a
c
b
c
的值,再计算(
a
+3
c
)•(3
b
-2
a
).
解答: 解:根据题意,得;
a
b
=0,
a
c
=5×8•cos60°=20,
b
c
=3×8•cos60°=12;
∴(
a
+3
c
)•(3
b
-2
a
)=3
a
b
-2
a
2
+9
b
c
-6
a
c

=0-2×52+9×12-6×20
=-62.
故答案为:-62.
点评:本题考查了平面向量的数量积的运算问题,解题时应按照平面向量数量积的运算法则进行计算,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x+1)是偶函数,当x∈(-∞,1)时,函数f(x)单调递减,设a=f(-
1
2
),b=f(-1),c=f(2),a=f(-
1
2
),b=f(-1),c=f(2),则a,b,c的大小关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程x3-x-3=0的实数解所在的区间是(  )
A、(-1,0)
B、(0,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p,q分别是函数f(x)=-2x+3在[-2,2]上的最大值和最小值,求函数g(x)=2x2-px+q在[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosωx-sinωx,sinωx),
b
=(-cosωx-sinωx,2
3
cosωx),其中常数ω∈(
1
2
,1),设函数f(x)=
a
b
(x∈R)的图象关于直线x=π对称.
(1)求函数f(x)的最小正周期与单调增区间;
(2)将y=f(x)的图象向左平移φ(φ>0)个单位得到函数g(x)的图象,若函数g(x)为奇函数,求φ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:y=loga(5x)在(0,+∞)上递增,q:x2+4ax+3>0的解集为R,若p∧q为假,¬q为假,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

以(-4,0)、(4,0)为焦点,2a=4的双曲线的标准方程是(  )
A、
x2
6
-
y2
12
=1
B、
x2
6
-
y2
14
=1
C、
x2
4
-
y2
12
=1
D、
x2
4
-
y2
12
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-4)2+(y-3)2=25,求过点M(2,1)的直线截圆所得最短弦长及此时的直线方程
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,AB=4,AD=2
2
,CD=2,PA⊥平面ABCD,PA=4.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)点Q为线段PB的中点,求直线QC与平面PAC所成角的正弦值.

查看答案和解析>>

同步练习册答案