精英家教网 > 高中数学 > 题目详情
19.已知点F为双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点,F关于直线y=$\frac{1}{3}$x的对称点在C上,则C的渐近线方程为y=±$\frac{\sqrt{6}}{2}$x.

分析 双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点F(c,0),设F(c,0)关于直线y=$\frac{1}{3}$x的对称点P(x0,y0),从而根据两点与直线的位置关系可得,求出点P的坐标,再代入到双曲线方程中,即可求出$\frac{b}{a}$的值,即可得到双曲线的渐近线方程.

解答 解:双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点F(c,0),设F(c,0)关于直线y=$\frac{1}{3}$x的对称点P(x0,y0),
则$\left\{\begin{array}{l}{\frac{{y}_{0}}{2}=\frac{1}{3}•\frac{{x}_{0}+c}{2}}\\{\frac{{y}_{0}}{{x}_{0}-c}=-3}\end{array}\right.$,
解得x0=$\frac{4}{5}$c,y0=$\frac{3}{5}$c,
即P($\frac{4}{5}$c,$\frac{3}{5}$c),
代入双曲线方程$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1得$\frac{16{c}^{2}}{25{a}^{2}}$-$\frac{9{c}^{2}}{25{b}^{2}}$=1,
即16×$\frac{{a}^{2}+{b}^{2}}{{a}^{2}}$-9×$\frac{{a}^{2}+{b}^{2}}{{b}^{2}}$=25,
即16(1+$\frac{{b}^{2}}{{a}^{2}}$)-9($\frac{{a}^{2}}{{b}^{2}}$+1)=25,
设$\frac{{b}^{2}}{{a}^{2}}$=m,
则16(1+m)-9($\frac{1}{m}$+1)=25,
整理可得16m2-18m-9=0,
即(2m-3)(8m+3)=0,
解得m=$\frac{3}{2}$,
∴$\frac{{b}^{2}}{{a}^{2}}$=$\frac{3}{2}$,
∴$\frac{b}{a}$=$\frac{\sqrt{6}}{2}$,
故则C的渐近线方程为y=±$\frac{\sqrt{6}}{2}$x,
故答案为:y=±$\frac{\sqrt{6}}{2}$x.

点评 本题考查了双曲线的简单性质和对称点的问题,考查了学生的运算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=log2x,g(x)=x2,则函数y=g(f(x))-x零点的个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x)=sin$\frac{π}{3}$(x+1)-$\sqrt{3}$cos$\frac{π}{3}$(x+1),则f(1)+f(2)+…+f(2016)+f(2017)=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线G:y2=2px(p>0),过焦点F的动直线l与抛物线交于A,B两点,线段AB的中点为M.
(Ⅰ)当直线l的倾斜角为$\frac{π}{4}$时,|AB|=16.求抛物线G的方程;
(Ⅱ) 对于(Ⅰ)问中的抛物线G,是否存在x轴上一定点N,使得|AB|-2|MN|为定值,若存在求出点N的坐标及定值,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}是等差数列,a5+a6=8,则数列{an}的前10项和为(  )
A.40B.35C.20D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$f(x)={e^x}+\frac{1}{x}$(x>0),若x0满足f'(x0)=0,设m∈(0,x0),n∈(x0,+∞),则(  )
A.f'(m)<0,f'(n)<0B.f'(m)>0,f'(n)>0C.f'(m)<0,f'(n)>0D.f'(m)>0,f'(n)<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow a$=(2,1),$\overrightarrow b$=(x,-1),若$\overrightarrow a$∥($\overrightarrow a$-$\overrightarrow b$),则$\overrightarrow a•\overrightarrow b$=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若双曲线$C:\frac{x^2}{m^2}-\frac{y^2}{n^2}=1$的离心率为 2,则直线mx+ny-1=0的倾斜角为(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{6}$或$\frac{5π}{6}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知由一组样本数据确定的回归直线方程为$\hat y=1.5x+1$,且$\overline x=2$,发现有两组数据(2.6,2.8)与(1.4,5.2)误差较大,去掉这两组数据后,重新求得回归直线的斜率为1.4,那么当x=6时,$\hat y$的估计值为(  )
A.9.6B.10C.10.6D.9.4

查看答案和解析>>

同步练习册答案