精英家教网 > 高中数学 > 题目详情
8.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow{b}$=(-sinθ,0),$\overrightarrow{c}$=(cosθ,-1),且(2$\overrightarrow{a}$-$\overrightarrow{b}$)∥$\overrightarrow{c}$,则tanθ等于-$\frac{2}{3}$.

分析 2$\overrightarrow{a}$-$\overrightarrow{b}$=(3sinθ,2),利用向量共线定理即可得出.

解答 解:2$\overrightarrow{a}$-$\overrightarrow{b}$=(3sinθ,2),
∵(2$\overrightarrow{a}$-$\overrightarrow{b}$)∥$\overrightarrow{c}$,∴-3sinθ-2cosθ=0,
解得tanθ=-$\frac{2}{3}$.
故答案为:-$\frac{2}{3}$.

点评 本题考查了向量共线定理、三角函数求值,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知复数z1=1-i,z2=-2+3i,则复数$\frac{{i•{z_2}}}{z_1}$对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠DBA=30°,$\sqrt{3}$AB=2BD,PD=AD,PD⊥底面ABCD,E为PC上一点,且PE=$\frac{1}{2}$EC.
(1)证明:PA⊥BD;
(2)若AD=$\sqrt{6}$,求三棱锥E-CBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的左右焦点分别为F1、F2,离心率为$\frac{2\sqrt{3}}{3}$,且经过右焦点F2的直线l与双曲线的右支交于A、B两点.
(1)求双曲线E的方程;
(2)求△ABF1的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知一几何体的三视图如图所示,则该几何体的表面积为(  )
A.14+6$\sqrt{5}$+10πB.14+6$\sqrt{5}$+20πC.12+12πD.26+6$\sqrt{5}$+10π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=xlnx+a(a∈R),g(x)=$\frac{2x}{{e}^{x-1}}$-e(e为自然对数的底数).
(Ⅰ)讨论函数f(x)的零点个数;
(Ⅱ)求证:当x>0时,f(x)>g(x)+a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.高考结束后高三的8名同学准备拼车去旅游,其中一班、二班、三班、四班每班各两名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置,)其中一班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一班的乘坐方式共有(  )
A.18种B.24种C.48种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知P(0,1)是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上一点,点P到椭圆C的两个焦点的距离之和为2$\sqrt{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A,B是椭圆C上异于点P的两点,直线PA与直线x=4交于点M,是否存在点A,使得S△ABP=$\frac{1}{2}{S_{△ABM}}$?若存在,求出点A的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:?x0∈R,使2${\;}^{{x}_{0}}$+2${\;}^{-{x}_{0}}$=1;命题q:?x∈R,都有lg(x2+2x+3)>0.下列结论中正确的是(  )
A.命题“¬p∧q”是真命题B.命题“p∧¬q”是真命题
C.命题“p∧q”是真命题D.命题“¬p∨¬q”是假命题

查看答案和解析>>

同步练习册答案