精英家教网 > 高中数学 > 题目详情
3.已知一几何体的三视图如图所示,则该几何体的表面积为(  )
A.14+6$\sqrt{5}$+10πB.14+6$\sqrt{5}$+20πC.12+12πD.26+6$\sqrt{5}$+10π

分析 根据几何体的三视图知该几何体是半圆柱体与三棱柱的组合体,
结合图中数据求出它的表面积.

解答 解:根据几何体的三视图知,该几何体是半圆柱体与三棱柱的组合体,
如图所示,
则该几何体的表面积为
S=S三棱柱+S半圆柱
=(2×3+$\sqrt{{4}^{2}{+2}^{2}}$×3+2×$\frac{1}{2}$×2×4)+(π•22+π•2•3)
=14+6$\sqrt{5}$+10π.
故选:A.

点评 本题主要考查了利用三视图求几何体表面积的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{1}{x}+klnx$,k≠0.
(Ⅰ)当k=2时,求函数f(x)切线斜率中的最大值;
(Ⅱ)若关于x的方程f(x)=k有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某程序框图如图所示,则该程序运行后输出的值是(  )
A.2B.-3C.5D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=ax3-3x2+1,若f(-a)、f(a)、f(3a)成公差不为0的等差数列,则过坐标原点作曲线y=f(x)的切线可以作(  )
A.0条B.1条C.2条D.3条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,过点P(2,1)的直线l的参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{3}t}\\{y=1+t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ,已知直线l与曲线C交于A、B两点.
(1)求曲线C的直角坐标方程;
(2)求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow{b}$=(-sinθ,0),$\overrightarrow{c}$=(cosθ,-1),且(2$\overrightarrow{a}$-$\overrightarrow{b}$)∥$\overrightarrow{c}$,则tanθ等于-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x+1|-|x-3|.
(Ⅰ)画出函数f(x)的图象;
(Ⅱ)若不等式f(x)≥$\frac{|3m+1|-|1-m|}{|m+1|}$对任意实数m≠-1,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若α为锐角,sinα-mcosα=a(m>0),则msinα+cosα=$\sqrt{{m}^{2}+1{-a}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.对于任意x∈R,函数f(x)表示y1=4x+1,y2=x+2,y3=-2x+4三个函数值的最小值,则f(x)的最大值是$\frac{8}{3}$.

查看答案和解析>>

同步练习册答案