精英家教网 > 高中数学 > 题目详情
1.如框图,当x1=6,x2=9,p=8.5时,x3=8.

分析 根据题意判断出|x1-x2|>|x2-x3|,确定路径,进而根据公式求得x3

解答 解:∵p=8.5≠$\frac{{x}_{1}+{x}_{2}}{2}$,
∴|x1-x2|>|x2-x3|,
∴p=$\frac{{x}_{2}+{x}_{3}}{2}$=$\frac{9+{x}_{3}}{2}$=8.5,
x3=8.
故答案为:8

点评 本题主要考查了程序框图的应用.注重了对学生推理能力和计算能力的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知动点M到点F(0,1)的距离等于点M到直线y=-1的距离,点M的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)设P为直线l:x-y-2=0上的点,过点P作曲线C的两条切线PA,PB,
(ⅰ)当点P($\frac{1}{2}$,-$\frac{3}{2}$)时,求直线AB的方程;
(ⅱ)当点P(x0,y0)在直线l上移动时,求|AF|•|BF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知中心在原点,焦点在x轴上的椭圆C过点P(0,$\sqrt{3}$),离心率e=$\frac{1}{2}$.
(1)求椭圆C的方程
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点.
①求k,m满足的关系式
②如图,F1,F2为椭圆的左右焦点,作F1M⊥l,F2N⊥l,垂足分别为M,N,四边形F1MNF2的面积S是否存在最大值?若存在,求出该最大值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)的定义域为[0,1),则f(1-3x)的定义域是(  )
A.(-2,1]B.(-$\frac{1}{2}$,1]C.(0,$\frac{1}{3}$]D.(-$\frac{1}{3}$,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数g(x)=x2-2x+1+mlnx,(m∈R).
(1)当m=1时,求函数y=g(x)在点(1,0)处的切线方程;
(2)求函数y=g(x)的单调递增区间;
(3)若函数y=g(x)在x∈($\frac{1}{4}$,+∞)上有两个极值点a,b,且a<b,记{x}表示大于x的最小整数,求{g(a)}-{g(b)}的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=xlnx,g(x)=-a+xlnb(a>0,b>0).
(I)求函数y=f(x)在点(e,f(e))处的切线方程:
(Ⅱ)设h(x)=f(x)+g(x),求h(x)单调区间:
(Ⅲ)若存在x0,使x0∈[$\frac{a+b}{4}$,$\frac{3a+b}{5}$]且f(x0)≤g(x0)成立,求证:e≤$\frac{b}{a}$<7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2e-2ax(a>0)
(1)已知函数f(x)的曲线在x=1处的切线方程为y=-2e-4x+b,求实数a、b的值.
(2)求函数在[1,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某机构为了解高三学生的睡眠时间,从该市的所有高三学生中随机抽取了100名,得到他们在某天各自的睡眠时间的数据,结果用下面的条形图表示.
(1)根据图中数据,估计该市高三学生的平均睡眠时间;
(2)现从这100名学生中任取2名,试求他们中至少有1名的睡眠时间低于该市高三学生的平均睡眠时间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足a1=1.Sn=$\frac{(n+1){a}_{n}}{2}$(n≥1),求数列{an}的通项公式an

查看答案和解析>>

同步练习册答案