精英家教网 > 高中数学 > 题目详情
10.某机构为了解高三学生的睡眠时间,从该市的所有高三学生中随机抽取了100名,得到他们在某天各自的睡眠时间的数据,结果用下面的条形图表示.
(1)根据图中数据,估计该市高三学生的平均睡眠时间;
(2)现从这100名学生中任取2名,试求他们中至少有1名的睡眠时间低于该市高三学生的平均睡眠时间的概率.

分析 根据样本的条形图可知,将各组的睡眠时间乘以频率进行求和即可

解答 解:(1)根据条形图可得这50名学生这一天平均每人的睡眠时间为:$\overline{x}$=0.1×(5.5+7+7.5)+0.3×6+0.4×6.5=6.4.
(2)现从这100名学生中任取2名,共有${C}_{100}^{2}$种不同的取法,他们中至少有1名的睡眠时间低于该市高三学生的平均睡眠时间的共有${C}_{40}^{1}{C}_{60}^{1}+{C}_{40}^{2}$,
由古典概型公式的他们中至少有1名的睡眠时间低于该市高三学生的平均睡眠时间的概率为$\frac{{C}_{40}^{1}{C}_{60}^{1}+{C}_{40}^{2}}{{C}_{100}^{2}}$=0.64.

点评 考查直方图的基本概念,考查解决实际问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为A,O为坐标原点,点B在C上,△OBA为等腰直角三角形.
(Ⅰ)求椭圆C的离心率e;
(Ⅱ)若圆x2+y2=1经过C上顶点,与x2+y2=1相切的直线l与C交于不同的两点M,N,求弦|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如框图,当x1=6,x2=9,p=8.5时,x3=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题p:“a>1,b>1”是命题q:“(a-1)(b-1)>0”(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知平面直角坐标系中,点O为原点,A(-3,-4),B(5,-12).
(1)求$\overrightarrow{AB}$的坐标及|$\overrightarrow{AB}$|;
(2)若$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,$\overrightarrow{OD}$=$\overrightarrow{OA}-\overrightarrow{OB}$,求$\overrightarrow{OC}$,$\overrightarrow{OD}$的坐标;
(3)求cos<$\overrightarrow{OA}$,$\overrightarrow{OC}$>

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=lgx的导数为(  )
A.$\frac{1}{x}$B.$\frac{1}{x}$ln10C.$\frac{1}{xln10}$D.$\frac{1}{xlge}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.假设随机变量X的绝对值不大于1,P{X=-1}=$\frac{1}{8}$,P{X=1}|=$\frac{1}{4}$;在事件{-1<X<1}出现的条件下,X在(-1,1)内的任一子区间上取值的条件概率与该子区间的长度成正比,试求:
(1)X的分布函数F(x);
(2)X取负值的概率p.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,已知tanA=2,tanB=3,∠A的对边a=1.
(1)求∠C的大小;
(2)求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点B(0,1).
(Ⅰ)求椭圆的标准方程;
(Ⅱ)直线l:y=k(x+2)交椭圆于P、Q两点,若点B始终在以PQ为直径的圆内,求实数k的取值范围.

查看答案和解析>>

同步练习册答案