精英家教网 > 高中数学 > 题目详情
2.假设随机变量X的绝对值不大于1,P{X=-1}=$\frac{1}{8}$,P{X=1}|=$\frac{1}{4}$;在事件{-1<X<1}出现的条件下,X在(-1,1)内的任一子区间上取值的条件概率与该子区间的长度成正比,试求:
(1)X的分布函数F(x);
(2)X取负值的概率p.

分析 (1)x<-1时,F(x)=0,x≥1,F(x)=1,再求出F(x)=P(X≤-1)+P{-1<X≤x}=$\frac{1}{16}$(5x+7),即可得到X的分布函数F(x);
(2)X取负值的概率P(X≤0)=F(0).

解答 解:(1)由题设知,x<-1时,F(x)=0,F(-1)=$\frac{1}{8}$,
∴P{-1<X≤1}=1-$\frac{1}{8}$-$\frac{1}{4}$=$\frac{5}{8}$,
P{-1<X≤x|-1<X<1}=$\frac{1}{2}$(x+1)(|x|<1),
∴P{-1<X≤x}=$\frac{5}{8}•\frac{x+1}{2}$=$\frac{5(x+1)}{16}$,
∴F(x)=P(X≤-1)+P{-1<X≤x}=$\frac{1}{16}$(5x+7),
∵x≥1,F(x)=1,
∴F(x)=$\left\{\begin{array}{l}{0,x<-1}\\{\frac{1}{16}(5x+7),-1≤x<1}\\{1,x≥1}\end{array}\right.$;
(2)P=P(X≤0)=F(0)=$\frac{7}{16}$.

点评 本题考查分布函数,考查概率的计算,考查学生分析解决问题的能力,正确求出概率是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知中心在原点,焦点在x轴上的椭圆C过点P(0,$\sqrt{3}$),离心率e=$\frac{1}{2}$.
(1)求椭圆C的方程
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点.
①求k,m满足的关系式
②如图,F1,F2为椭圆的左右焦点,作F1M⊥l,F2N⊥l,垂足分别为M,N,四边形F1MNF2的面积S是否存在最大值?若存在,求出该最大值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2e-2ax(a>0)
(1)已知函数f(x)的曲线在x=1处的切线方程为y=-2e-4x+b,求实数a、b的值.
(2)求函数在[1,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某机构为了解高三学生的睡眠时间,从该市的所有高三学生中随机抽取了100名,得到他们在某天各自的睡眠时间的数据,结果用下面的条形图表示.
(1)根据图中数据,估计该市高三学生的平均睡眠时间;
(2)现从这100名学生中任取2名,试求他们中至少有1名的睡眠时间低于该市高三学生的平均睡眠时间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,△ABC内接于圆O,直线L平行AC交线段BC于D,交线段AB于E,交圆O于G、F,交圆O在点A的切线于P.若D是BC的中点,PE=6,ED=4,EF=6,则PA的长为2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,顶点B、C的坐标分别为(0,-2),(0,2),其周长为12,求顶点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在区间[-1,5]上任取一个数x,则log2(x+3)≥log2(3x+4)-1的概率为(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足a1=1.Sn=$\frac{(n+1){a}_{n}}{2}$(n≥1),求数列{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦点为F(-1,0),O为坐标原点,点G(1,$\frac{{\sqrt{2}}}{2}}$)在椭圆上,过点F的直线l交椭圆于不同的两点 A、B.
(1)求椭圆C的方程;
(2)求弦AB的中点M的轨迹方程;
(3)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,P为x轴上一点,若PA、PB是菱形的两条邻边,求点P横坐标的取值范围.

查看答案和解析>>

同步练习册答案