精英家教网 > 高中数学 > 题目详情
6.设F1、F2分别是椭圆$\frac{{x}^{2}}{4}$+y2=1的左、右焦点,若P是该椭圆上的一个动点,则$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最小值为-2.

分析 由题意可知:点P(x,y),$\overrightarrow{P{F}_{1}}$=(-$\sqrt{3}$-x,-y),$\overrightarrow{P{F}_{2}}$=($\sqrt{3}$-x,-y),根据向量数量积的坐标运算,求得$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=$\frac{3}{4}{x}^{2}$-2,由-2≤x≤2,即可求得-2≤$\frac{3}{4}{x}^{2}$-2≤1,求得$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最小值.

解答 解:由椭圆方程可知:a=2,b=1,c=$\sqrt{3}$,
∴F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),
设点P(x,y),$\overrightarrow{P{F}_{1}}$=(-$\sqrt{3}$-x,-y),$\overrightarrow{P{F}_{2}}$=($\sqrt{3}$-x,-y),
∴$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=(-$\sqrt{3}$-x)($\sqrt{3}$-x)+y2=x2-3+1-$\frac{{x}^{2}}{4}$=$\frac{3}{4}{x}^{2}$-2,
∵-2≤x≤2,0≤x2≤4,
∴-2≤$\frac{3}{4}{x}^{2}$-2≤1,
$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最小值-2,
故答案为:-2.

点评 本题考查椭圆的简单性质,考查向量数量积的坐标运算,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.函数f(x)=x•ex
(1)求f(x)的极值;
(2)k×f(x)≥$\frac{1}{2}$x2+x在[-1,+∞)上恒成立,求k值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={5},B={4,5},则A∩B=(  )
A.B.{4}C.{5}D.{4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a=2${\;}^{\frac{1}{5}}$,b=log3$\frac{5}{2}$,c=log${\;}_{\frac{1}{5}}$4,则(  )
A.b<a<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知平行四边形ABCD的三个顶点分别为A(-1,-2),B(3,-1),C(5,6),则顶点D的坐标为(  )
A.(1,5)B.(2,2)C.(1,3)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C同时满足下列三个条件:①与y轴相切;②半径为4;③圆心在直线x-3y=0上.求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.从某地区一次中学生知识竞赛中,随机抽取了30名学生的成绩,绘成如图所示的2×2列联表 (甲组优秀,乙组一般):
甲组乙组合计
男生76
女生512
合计
(1)试问有没有90%的把握认为成绩分在甲组或乙组与性别有关;
(2)①如果用分层抽样的方法从甲组和乙组中抽取5人,再从5人中随机抽取2人,那么至少有1人在甲组的概率是多少?
②用样本估计总体,把频率作为概率,若从该地区所有的中学(人数很多)中随机抽取3人,用ξ表示所选3人中甲组的人数,试写出ξ的分布列,并求出ξ的数学期望.K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$,其中n=a+b+c+d
独立性检验临界表:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.幂函数f(x)=xa的图象经过点(8,2),则f(${\frac{1}{8}}$)的值为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.对于任意的x∈R,e|2x+1|+m≥0恒成立,则实数m的取值范围是[-1,+∞).

查看答案和解析>>

同步练习册答案