精英家教网 > 高中数学 > 题目详情
4.已知直线a,b都与平面α相交,则a,b的位置关系是(  )
A.平行B.相交C.异面D.以上都有可能

分析 以正方体为载体,列举所有情况,由此能求出a,b的位置关系.

解答 解:如图,在正方体ABCD-A1B1C1D1中,
AA1∩平面ABCD=A,BB1∩平面ABCD=B,AA1∥BB1
AA1∩平面ABCD=A,AB1∩平面ABCD=A,AA1与AB1相交;
AA1∩平面ABCD=A,CD1∩平面ABCD=C,AA1与CD1异面.
∴直线a,b都与平面α相交,则a,b的位置关系是相交、平行或异面.
故选:D.

点评 本题考查两直线的位置关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,AB是圆的直径,C是圆上的点,且PA⊥BC.
(I)求证:平面PAC⊥平面PBC;
(Ⅱ)若D是PA中点,O、M分别是AB、AC中点,点E在线段OM上,求证:DE∥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在三棱锥P-ABC中,平面PAB⊥平面ABC,PA⊥PB,M,N分别为AB,PA的中点.
(1)求证:PB∥平面MNC;
(2)若AC=BC,求证:PA⊥平面MNC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在三棱柱ABC-A1B1C1中,底面三角形ABC是等边三角形,侧棱AA1⊥底面ABC,D为棱AB的中点
(1)求证:平面A1CD⊥平面AA1B1B
(2)求证:BC1∥平面A1CD
(3)若AB=1,AA1=$\sqrt{3}$,求三棱锥D-A1B1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.己知向量$\overrightarrow m=({\sqrt{3}sin\frac{x}{4},1}),\overrightarrow n=({cos\frac{x}{4},{{cos}^2}\frac{x}{4}})$,记.$f(x)=\overrightarrow m.\overrightarrow n$
(1)若$cos({\frac{2π}{3}-x})$=$-\frac{1}{2}$,求$f(x)=\overrightarrow m.\overrightarrow n$的值;
(2)在锐角△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,△ABC为等腰直角三角形,∠BAC=90°,AB=2,BD=1,一束光线从点D射入,先后经过斜边BC与直角边AC反射后,恰好从点D射出,则该光线在三角形内部所走的路程是$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sin($\frac{π}{2}$-x)•($\sqrt{3}$sinx-cosx).
(1)求函数f(x)的单调递减区间;
(2)若f(θ-$\frac{π}{6}$)=$\frac{1}{10}$,求sinθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列等式一定成立的是(  )
A.$\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{BC}$B.$\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{BC}$C.$\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{CB}$D.$\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CB}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在平面直角坐标内A,B两点满足:
①点A,B都在函数y=f(x)的图象上;
②点A,B关于原点对称,则称A,B为函数y=f(x)的一个“黄金点对”.
则函数f(x)=$\left\{\begin{array}{l}{|x+4|,x≤0}\\{-\frac{1}{x},x>0}\end{array}\right.$的“黄金点对”的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案