精英家教网 > 高中数学 > 题目详情
14.在平面直角坐标内A,B两点满足:
①点A,B都在函数y=f(x)的图象上;
②点A,B关于原点对称,则称A,B为函数y=f(x)的一个“黄金点对”.
则函数f(x)=$\left\{\begin{array}{l}{|x+4|,x≤0}\\{-\frac{1}{x},x>0}\end{array}\right.$的“黄金点对”的个数为(  )
A.0个B.1个C.2个D.3个

分析 根据题意:“黄金点对”,可知,欲求f(x)的“黄金点对”,只须作出函数y=-$\frac{1}{x}$(x>0)的图象关于原点对称的图象,看它与函数y=|x+4|,x≤0的图象的交点个数即可.

解答 解:根据题意:“黄金点对”,可知,
作出函数y=-$\frac{1}{x}$(x>0)的图象关于原点对称的图象,
同一坐标系里作出函数y=|x+4|,x≤0的图象如右图:
观察图象可得,它们在x≤0时的交点个数是3.
即f(x)的“黄金点对”有:3个.
故选:D.

点评 本题主要考查了奇偶函数图象的对称性,以及数形结合的思想,属于基础题.解答的关键在于对“黄金点对”的正确理解,合理地利用图象法解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知直线a,b都与平面α相交,则a,b的位置关系是(  )
A.平行B.相交C.异面D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$y={log_a}({x^2}-ax+\frac{1}{2})$,对任意的x1,x2∈[1,+∞),且x1≠x2时,满足$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0$,则实数a的取值范围是(  )
A.$(1,\frac{3}{2})$B.$({\frac{3}{2},+∞}]$C.(1,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x不超过4尾/立方米时,v的值为2千克/年;当4<x≤20时,v是x的一次函数,当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年.
(1)当0<x≤20时,求v关于x的函数表达式;
(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.有5名学生、2名老师站成一行照相,2名老师不能相邻的排法有(  )
A.${A}_{5}^{2}$${A}_{2}^{2}$B.${A}_{7}^{7}$-${A}_{2}^{2}$${A}_{6}^{6}$
C.${A}_{7}^{7}$-${A}_{6}^{6}$D.${C}_{10}^{8}$0.820.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列结论不正确的是(  )
A.若y=ln3,则y′=0B.若y=-$\sqrt{x}$,则y′=-$\frac{1}{2\sqrt{x}}$
C.若y=$\frac{1}{\sqrt{x}}$,则y′=-$\frac{1}{2\sqrt{x}}$D.若y=3x,则y′=3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$=(2cosx,-1),$\overrightarrow{b}$=$(\frac{{\sqrt{3}}}{2}sinx,\frac{1}{2}cos2x)$,x∈R,设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求f(x)的单调递增区间;
(2)求f(x)在$[{0,\frac{π}{2}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如果不等式x2+mx+n≤0的解集为A=[2,5],B=[a,a+1]
(1)求实数m,n的值;
(2)设p:x∈A,q:x∈B,若q是p的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.两圆C1:x2+y2=4与C2:x2+y2-2x-1=0的位置关系是(  )
A.相外切B.相内切C.相交D.外离

查看答案和解析>>

同步练习册答案