精英家教网 > 高中数学 > 题目详情
9.有5名学生、2名老师站成一行照相,2名老师不能相邻的排法有(  )
A.${A}_{5}^{2}$${A}_{2}^{2}$B.${A}_{7}^{7}$-${A}_{2}^{2}$${A}_{6}^{6}$
C.${A}_{7}^{7}$-${A}_{6}^{6}$D.${C}_{10}^{8}$0.820.28

分析 间接法:5名学生、2名老师站成一行照相没有限制条件的排列为P77种,排除2名老师相邻的排列有排P22P66,问题得以解决

解答 解:间接法:5名学生、2名老师站成一行照相没有限制条件的排列为P77种,2名老师相邻的排列有排P22P66,则2名老师不能相邻的排法有P77-P22P66
故选:B.

点评 本题考查计数原理的应用,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.己知向量$\overrightarrow m=({\sqrt{3}sin\frac{x}{4},1}),\overrightarrow n=({cos\frac{x}{4},{{cos}^2}\frac{x}{4}})$,记.$f(x)=\overrightarrow m.\overrightarrow n$
(1)若$cos({\frac{2π}{3}-x})$=$-\frac{1}{2}$,求$f(x)=\overrightarrow m.\overrightarrow n$的值;
(2)在锐角△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C的对边分别是a,b,c,且满足a2+b2=2c2,sinAcosB=2cosAsinB.
(Ⅰ)求cosC的值;
(Ⅱ)若$c=\sqrt{6}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设向量$\overrightarrow{a}$和$\overrightarrow{b}$均为单位向量,且($\overrightarrow{a}$+$\overrightarrow{b}$)2=1,则$\overrightarrow{a}$与$\overrightarrow{b}$夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l:$\left\{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数)经过椭圆$C:\left\{{\begin{array}{l}{x=2cosφ}\\{y=\sqrt{3}sinφ}\end{array}}\right.$(φ为参数)的左焦点F.
(1)求m的值;
(2)设直线l与椭圆C交于A、B两点,求|FA|•|FB|的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在平面直角坐标内A,B两点满足:
①点A,B都在函数y=f(x)的图象上;
②点A,B关于原点对称,则称A,B为函数y=f(x)的一个“黄金点对”.
则函数f(x)=$\left\{\begin{array}{l}{|x+4|,x≤0}\\{-\frac{1}{x},x>0}\end{array}\right.$的“黄金点对”的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若(x+$\sqrt{2}}$)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a42-(a1+a32的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=log3x+2,x∈(0,9]
(1)求函数g(x)=f(2sinx-1)+f(3$\sqrt{3}$tanx)的定义域.
(2)求函数h(x)=[f(x)]2+f(x2)的最小值及取最小值时对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(1+x+x2)(2+x)6展开式中x2项的系数为496.

查看答案和解析>>

同步练习册答案