精英家教网 > 高中数学 > 题目详情

【题目】盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:
(1)取到的2只都是次品;
(2)取到的2只中正品、次品各一只;
(3)取到的2只中至少有一只正品.

【答案】解:(1)从6只灯泡中有放回地任取两只,共有=36种不同取法,
取到的两只都是次品的情况为=4种,
∴取到的2只都是次品的概率p1=
(2)取到的2只中正品、次品各一只有两种可能:
①第一次取到正品,第二次取到次品,有4×2种取法;
②第一次取到次品,第二次取到正品,有2×4种取法.
∴取到的2只中正品、次品各一只的概率p2==
(3)取到的2只中至少有一只正品的概率p3=1﹣p1=1﹣=
【解析】(1)从6只灯泡中有放回地任取两只,共有=36种不同取法,取到的两只都是次品的情况为=4种,由此能求出取到的2只都是次品的概率.
(2)取到的2只中正品、次品各一只有两种可能:①第一次取到正品,第二次取到次品,有4×2种取法;②第一次取到次品,第二次取到正品,有2×4种取法.由此能求出取到的2只中正品、次品各一只的概率.
(3)利用对立事件概率公式能求出取到的2只中至少有一只正品的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点(
A.向左平行移动 个单位长度
B.向右平行移动 个单位长度
C.向左平行移动1个单位长度
D.向右平行移动1个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】说明:请同学们在(A)(B)两个小题中任选一题作答.

A)小明计划搭乘公交车回家,经网上公交实时平台查询,得到838路与611路公交车预计到达公交站的时间均为8:30,已知公交车实际到达时间与网络报时误差不超过10分钟.

(1)若小明赶往公交站搭乘 611 路,预计小明到达站时间在8:20到8:35,求小明比车早到的概率;

(2)求两辆车到达站时间相差不超过5分钟的概率.

B)小明计划搭乘公交车回家,经网上公交实时平台查询,得到838路与611路公交车预计到达公交站的之间均为8:30.已知公交车实际到达时间与网络报时误差不超过10分钟

(1)求两辆车到达站时间相差不超过5分钟的概率

(2)求838路与611路公交车实际到站时间与网络报时的误差之和不超过10分钟的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A类型试题,则使用后该试题回库,并增补一道A类试题和一道B类型试题入库,此次调题工作结束;若调用的是B类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n+m道试题,其中有n道A类型试题和m道B类型试题,以X表示两次调题工作完成后,试题库中A类试题的数量.
(Ⅰ)求X=n+2的概率;
(Ⅱ)设m=n,求X的分布列和均值(数学期望)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在15-75岁之间的100人进行调查, 经统计“青少年”与“中老年”的人数之比为9:11

关注

不关注

合计

青少年

15

中老年

合计

50

50

100

(1)根据已知条件完成上面的列联表,并判断能否有的把握认为关注“一带一路”是否和年龄段有关?

(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“一带一路”的人数为X,求X的分布列及数学期望.

附:参考公式,其中

临界值表:

0.05

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数fx)的单调递减区间;

2)设fx)的最小值是,最大值是3,求实数mn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题函数上是减函数,命题

(1)若为假命题,求实数的取值范围;

(2)若为真命题,且”为真命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面是菱形, 平面 ,点的中点.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过P(2,1)且两两互相垂直的直线l1 , l2分别交椭圆 + =1于A,B与C,D.
(1)求|PA||PB|的最值;
(2)求证: + 为定值.

查看答案和解析>>

同步练习册答案