精英家教网 > 高中数学 > 题目详情

【题目】某公司为提高市场销售业绩,促进某产品的销售,随机调查了该产品的月销售单价(单位:元/件)及相应月销量(单位:万件),对近5个月的月销售单价和月销售量的数据进行了统计,得到如下表数据:

月销售单价(元/件)

9

10

11

月销售量(万件)

11

10

8

6

5

(Ⅰ)建立关于的回归直线方程;

(Ⅱ)该公司开展促销活动,当该产品月销售单价为7/件时,其月销售量达到18万件,若由回归直线方程得到的预测数据与此次促销活动的实际数据之差的绝对值不超过万件,则认为所得到的回归直线方程是理想的,试问:(Ⅰ)中得到的回归直线方程是否理想?

(Ⅲ)根据(Ⅰ)的结果,若该产品成本是5/件,月销售单价为何值时(销售单价不超过11/件),公司月利润的预计值最大?

参考公式:回归直线方程,其中

参考数据:

【答案】(Ⅰ)(Ⅱ)可以认为所得到的回归直线方程是理想的.(Ⅲ)该产品单价定为元时,公司才能获得最大利润

【解析】

(Ⅰ)根据参考数据由回归系数公式计算,再由计算,即可写出回归直线方程;

(Ⅱ)由回归直线方程预测时的估计值,检测即可知是否理想;

(Ⅲ)写出销售利润,利用二次函数求最值即可.

(Ⅰ)因为

所以,所以

所以关于的回归直线方程为:

(Ⅱ)当时,,则

所以可以认为所得到的回归直线方程是理想的.

(Ⅲ)设销售利润为,则

,所以时,取最大值,

所以该产品单价定为元时,公司才能获得最大利润.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,.过直线的平面分别交棱EF两点.

1)求证:

2)若直线与平面所成角为,且,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】业务技能测试是量化考核员工绩效等级的一项重要参考依据.某公司为量化考核员工绩效等级设计了AB两套测试方案,现各抽取名员工参加AB两套测试方案的预测试,统计成绩(满分分),得到如下频率分布表.

成绩频率

方案A

方案B

1)从预测试成绩在的员工中随机抽取人,记参加方案A的人数为,求的最有可能的取值;

2)由于方案A的预测试成绩更接近正态分布,该公司选择方案A进行业务技能测试.测试后,公司统计了若干部门测试的平均成绩与绩效等级优秀率,如下表所示:

根据数据绘制散点图,初步判断,选用作为回归方程.令,经计算得

(ⅰ)若某部门测试的平均成绩为,则其绩效等级优秀率的预报值为多少?

(ⅱ)根据统计分析,大致认为各部门测试平均成绩,其中近似为样本平均数近似为样本方差,求某个部门绩效等级优秀率不低于的概率为多少?

参考公式与数据:(1

2)线性回归方程中,

3)若随机变量,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足存在正数,使得对定义域内的每一个值,在其定义域内都存在,使成立,则称该函数为依附函数

1)分别判断函数①,②是否为依附函数,并说明理由;

2)若函数的值域为,求证:依附函数’”的充要条件是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为提高市场销售业绩,促进某产品的销售,随机调查了该产品的月销售单价(单位:元/件)及相应月销量(单位:万件),对近5个月的月销售单价和月销售量的数据进行了统计,得到如下表数据:

月销售单价(元/件)

9

10

11

月销售量(万件)

11

10

8

6

5

(Ⅰ)建立关于的回归直线方程;

(Ⅱ)该公司开展促销活动,当该产品月销售单价为7/件时,其月销售量达到18万件,若由回归直线方程得到的预测数据与此次促销活动的实际数据之差的绝对值不超过万件,则认为所得到的回归直线方程是理想的,试问:(Ⅰ)中得到的回归直线方程是否理想?

(Ⅲ)根据(Ⅰ)的结果,若该产品成本是5/件,月销售单价为何值时(销售单价不超过11/件),公司月利润的预计值最大?

参考公式:回归直线方程,其中

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱中,四边形为梯形, ,且.过三点的平面记为 的交点为.

(I)证明: 的中点;

(II)求此四棱柱被平面所分成上下两部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是单调递增的等差数列,a2+a414a21a3+1a4+7成等比数列.

1)求数列{an}的通项公式;

2)设数列的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥的底面是边长的菱形,的中点是顶点在底面的射影,的中点.

(1)求证:面平面

(2)若,求面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动圆过定点,且在轴上截得的弦的长为4.

1)若动圆圆心的轨迹为曲线,求曲线的方程;

2)在曲线的对称轴上是否存在点,使过点的直线与曲线的交点满足为定值?若存在,求出点的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案