精英家教网 > 高中数学 > 题目详情
已知数列{an}满足:当n∈(
(k-1)k
2
k(k+1)
2
](n,k∈N*)时,an=(-1)k+1•k,Sn是数列{an} 的前n项和,定义集合Tn={n|Sn是an的整数倍,n,m∈N*,且1≤n≤m},Card(A)表示集合A中元素的个数,则Card(T15)=
 
,Card(T2014)=
 
考点:元素与集合关系的判断,数列的求和,归纳推理
专题:新定义
分析:(1)本题先根据条件对数列的通项进行研究,再推导出前n项和,通过前n项和与通项的整除关系,得到结论;(2)根据题中定义,归纳得到奇数组对应的n符合条件,从而得到本题的答案.
解答: 解:(1)取k=1,区间(
(k-1)k
2
k(k+1)
2
]
即为(0,1],1∈(0,1],故a1=1,
取k=2,区间(
(k-1)k
2
k(k+1)
2
]
即为(1,3],2,3∈(1,3],故a2=-2,a3=-2,
取k=3,区间(
(k-1)k
2
k(k+1)
2
]
即为(3,6],4,5,6∈(3,6],故a4=3,a5=3,a6=3,
取k=4,区间(
(k-1)k
2
k(k+1)
2
]
即为(6,10],7,8,9,10∈(6,10],故a7=-4,a8=-4,a9=-4,a10=-4,
取k=5,区间(
(k-1)k
2
k(k+1)
2
]
即为(10,15],11,12,13,14,15∈(10,15],故a11=5,a12=5,a13=5,a14=5,a15=5.
当n=1时,S1=1,a1=1,符合Sn是an的整数倍;
当n=2时,S2=1-2=-1,a2=-2,不符合Sn是an的整数倍;
当n=3时,S3=-3,a3=-2,不符合Sn是an的整数倍;
当n=4时,S4=0,a4=3,符合Sn是an的整数倍;
当n=5时,S5=3,a5=3,符合Sn是an的整数倍;
当n=6时,S6=6,a6=6,符合Sn是an的整数倍;
当n=7时,S7=2,a7=-4,不符合Sn是an的整数倍;
当n=8时,S8=-2,a8=-4,不符合Sn是an的整数倍;
当n=9时,S9=-6,a9=-4,不符合Sn是an的整数倍;
当n=10时,S10=-10,a10=-4,不符合Sn是an的整数倍;
当n=11时,S11=-5,a11=5,符合Sn是an的整数倍;
当n=12时,S12=0,a12=5,符合Sn是an的整数倍;
当n=14时,S14=10,a14=5,符合Sn是an的整数倍;
当n=15时,S15=15.a15=5,符合Sn是an的整数倍.
符合条件的n有:1,4,5,6,11,12,13,14,15.共有9 个.
∵card(A)表示集合A中元素的个数,
∴card(T15)=9.
(2)∵当n∈(
(k-1)k
2
k(k+1)
2
](n,k∈N*)时,an=(-1)k+1
又∵
k(k+1)
2
-
(k-1)k
2
=k

∴数列{an}中,有连续k个(-1)k+1•k,(k∈N*),
可以进行分组考察,即第1组,1个1;第2组,2个-2;第3组,3个3;第4组,4个-4;第5组,5个5;第6组,6个-6…
∵Sn是数列{an} 的前n项和,定义集合Tn={n|Sn是an的整数倍,n,m∈N*,且1≤n≤m},
∴其中符合条件的n有:1,4,5,6,11,12,13,14,15…
对应的是奇数组:第1组,第3组,第5组…
∵2014=(1+2+3+…+62)+61,
∴符合条件的元素个数有:(1+3+5+7+…+61)+61=
(1+61)×31
2
+61=31×31+61=1022

故答案为:(1)9;(2)1022.
点评:本题考查了数列的通项和前n项和的知识,还考查了新定义概念的应用.难点是对新定义的准确理解和运用,还要能进行归纳推理.本题的思维量和计算量较大,有难度,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆
x2
4
+
y2
3
=1的上,下顶点分别为A1,A2,左顶点为B1,左焦点为F1,若直线A1F1交直线A2B1于点D,则cos∠B1DF1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形ABC,AB=2,AC=
2
BC
,那么三角形ABC面积的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
arcsinx
2x+2-x
的最大和最小值分别是M和m,则M+m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:当n∈(
(k-1)k
2
k(k+1)
2
]
(n,k∈N*)时,an=(-1)k+1•k,Sn是数列{an}的前n项和,定义集合Tm={n|Sn是an的整数倍,n,m∈N*,且1≤n≤m},card(A)表示集合A中元素的个数,则 a15=
 
,card(T15)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a,b,c分别是内角A,B,C所对的边,且3a2+3b2-c2=4ab,则下列结论正确的是(  )
A、sinA≥cosB
B、sinA≥sinB
C、sinA≤cosB
D、cosA≤cosB

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
m
+
y2
6
=1
的焦距为2,则m的取值是(  )
A、7B、5C、5或7D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(n)=
2,n=0
nf(n-1),n∈N*
,则f(5)的值是(  )
A、4B、48
C、240D、1440

查看答案和解析>>

科目:高中数学 来源: 题型:

“x>1”是“ln|x|>0”的(  )
A、充分非必要条件
B、必要非充分条件
C、充要条件
D、既非充分也非必要条件

查看答案和解析>>

同步练习册答案