精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Snn2(n∈N*),等比数列{bn}满足b1a1,2b3b4.
(1)求数列{an}和{bn}的通项公式;
(2)若cnan·bn(n∈N*),求数列{cn}的前n项和Tn.
(1)bn=2n-1(n∈N*).(2)(2n-3)×2n+3.
(1)∵当n=1时,a1S1=1;
n≥2时,anSnSn-1n2-(n-1)2=2n-1,
an=2n-1(n∈N*),
b1a1=1,设等比数列{bn}的公比为q,则q≠0.
∵2b3b4,∴2q2q3,∴q=2,
bn=2n-1(n∈N*).
(2)由(1)可得cnan·bn=(2n-1)×2n-1(n∈N*),
Tn=1×20+3×2+5×22+…+(2n-1)×2n-1,①
∴2Tn=1×2+3×22+5×23+…+(2n-1)×2n,②
②-①得
Tn=(2n-1)×2n-(1×20+2×2+2×22+…+2×2n-1)
=(2n-1)×2n-(1+22+23+…+2n)=(2n-3)×2n+3.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列{an}是等差数列,a2=6,a5=12,数列{bn}的前n项和是Sn,且Sn+bn=1.
(1)求数列{an}的通项公式.
(2)求证:数列{bn}是等比数列.
(3)记cn=,{cn}的前n项和为Tn,若Tn<对一切n∈N*都成立,求最小正整数m.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知各项均为正数的等比数列{an}中,a1a2a3=5,a7a8a9=10,则a4a5a6等于(  )
A.5B.7C.6D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}满足3an+1an=0,a2=-,则{an}的前10项和等于(  )
A.-6(1-3-10)B.(1-310)
C.3(1-3-10)D.3(1+3-10)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等比数列{an}中,若log2(a2a98)=4,则a40a60等于(  )
A.-16B.10C.16D.256

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在各项都为正数的等比数列{an}中,a1=2,a6=a1a2a3,则公比q的值为(  )
A.B.C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知各项均为正数的数列{an}的前n项和为Sn,满足8Sna+4an+3(n∈N*),且a1a2a7依次是等比数列{bn}的前三项.
(1)求数列{an}及{bn}的通项公式;
(2)是否存在常数a>0且a≠1,使得数列{an-logabn}(n∈N*)是常数列?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求下面数列的前n项和:
1,3,5,7,…

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等比数列{an}的各项均为正数,且,则(   )
A.12B.10 C.8D.2+log3 5

查看答案和解析>>

同步练习册答案