精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,tanA=tanB=

1)求C的大小;

2)若△ABC的最小边长为,求△ABC的面积.

【答案】(1);(2)

【解析】

1)利用诱导公式、两角和的正切公式,求得tanC=-tanA+B)的值,可得C的值.

2)根据三个角的正切值,可以得到a最小,利用同角三角函数的基本关系求出 sinAsinB的值,再利用正弦定理求出c的值,进而可得ABC的面积.

解:(1)△ABC中,∵tanA=tanB=

tanC=-tanA+B=-=-1

C=

2)∵tanAtanB

ABC

a为最小边,a=

tanA==tanB==

sin2A+cos2A=1sin2B+cos2B=1

sinA=sinB=

由正弦定理,=,可得c===

∴△ABC的面积为acsinB=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的图像可以由y=cos2x的图像先纵坐标不变横坐标伸长到原来的2倍,再横坐标不变纵坐标伸长到原来的2倍,最后向右平移个单位而得到.

⑴求f(x)的解析式与最小正周期

⑵求f(x)在x∈(0,π)上的值域与单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为 (为参数),以为极点, 轴的非负半轴为极轴的极坐标系中,直线的极坐标方程为.

(1)求曲线的极坐标方程;

(2)设直线与曲线相交于两点,求的值.

【答案】(1)曲线的极坐标方程为: ;(2)6.

【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线的普通方程,再根据化为极坐标方程;(2)将直线l的极坐标方程代入曲线的极坐标方程得,再根据的值.

试题解析:解:1)将方程消去参数

∴曲线的普通方程为

代入上式可得

∴曲线的极坐标方程为: -

2)设两点的极坐标方程分别为,

消去

根据题意可得是方程的两根,

型】解答
束】
23

【题目】选修4—5:不等式选讲

已知函数

(1)时,求关于x的不等式的解集;

(2)若关于x的不等式有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)lnx,若函数f(x)[1e]上的最小值是,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过原点的一条直线与椭圆=1ab0)交于AB两点,以线段AB为直径的圆过该椭圆的右焦点F2,若∠ABF2[],则该椭圆离心率的取值范围为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是菱形,且,其对角线交于点 是棱上的中点.

(1)求证:面

(2)若面底面 ,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是公差不为零的等差数列,满足,且成等比数列.

(1)求数列的通项公式;

(2)设数列满足,求数列的前项和.

【答案】(1);(2)

【解析】试题分析:1)设等差数列 的公差为,由a3=7,且成等比数列.可得,解之得即可得出数列的通项公式;

2)由(1)得,则,由裂项相消法可求数列的前项和.

试题解析:(1)设数列的公差为,且由题意得

,解得

所以数列的通项公式.

(2)由(1)得

.

型】解答
束】
18

【题目】四棱锥的底面为直角梯形,为正三角形.

(1)点为棱上一点,若平面,求实数的值;

(2)求点B到平面SAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角坐标系xOy中,已知MN是圆C:(x2)2+(y3)2=2的一条弦,且CMCNPMN的中点.当弦MN在圆C上运动时,直线lxy5=0上总存在两点AB,使得恒成立,则线段AB长度的最小值是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆:的左、右焦点分别为,若椭圆过点.

(1)求椭圆的方程;

(2)若为椭圆的左、右顶点, )为椭圆上一动点,设直线分别交直线 于点,判断线段为直径的圆是否经过定点,若是,求出该定点坐标;若不恒过定点,说明理由.

【答案】(1) ;(2)答案见解析.

【解析】试题分析:(1将点坐标代人椭圆方程 并与离心率联立方程组,解得 2根据点斜式得直线方程,与直线联立解得点坐标,根据向量关系得为直径的圆方程,最后代人椭圆方程进行化简,并根据恒等式成立条件求定点坐标.

试题解析:(1)由已知

∵椭圆过点

联立①②得

∴椭圆方程为

(2)设,已知

,∴

都有斜率

将④代入③得

方程

方程

由对称性可知,若存在定点,则该定点必在轴上,设该定点为

,∴

∴存在定点以线段为直径的圆恒过该定点.

点睛:定点的探索与证明问题

(1)探索直线过定点时,可设出直线方程为,然后利用条件建立等量关系进行消元,借助于直线系的思想找出定点.

(2)从特殊情况入手,先探求定点,再证明与变量无关.

型】解答
束】
21

【题目】已知函数,曲线处的切线经过点.

(1)证明:

(2)若当时, ,求的取值范围.

查看答案和解析>>

同步练习册答案