精英家教网 > 高中数学 > 题目详情
4.如图所示,四棱锥P-ABCD的底面为直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E为AB的中点.
(1)求证:平面PDE⊥平面PAC;
(Ⅱ)求直线PC与平面PDE所成的角的正弦值.

分析 (I)点C为坐标原点建立空间直角坐标系,求出向量$\overrightarrow{DE}$,$\overrightarrow{AC}$,$\overrightarrow{CP}$的坐标,根据数量积得出DE⊥AC,DE⊥CP,故而DE⊥平面PAC,于是平面PDE⊥平面PAC;
(II)求出平面PDE的法向量$\overrightarrow{n}$,计算$\overrightarrow{n}$与$\overrightarrow{PC}$的夹角,则直线PC与平面PDE所成的角的正弦值等于|cos<$\overrightarrow{n},\overrightarrow{PC}$>|.

解答 解:(I)以点C为坐标原点,以直线CD,CB,CP分别为x,y,z轴建立空间直角坐标系C-xyz
则C(0,0,0),A(2,1,0),B(0,3,0),P(0,0,2),D(2,0,0),E(1,2,0).
∴$\overrightarrow{DE}=({-1,2,0})$,$\overrightarrow{CA}=({2,1,0})$,$\overrightarrow{CP}=({0,0,2})$,
∴$\overrightarrow{DE}•\overrightarrow{CA}=({-1,2,0})•({2,1,0})=0$,$\overrightarrow{DE}•\overrightarrow{CP}=({-1,2,0})•({0,0,2})=0$,
∴DE⊥CA,DE⊥CP,
又CP∩CA=C,AC?平面PAC,CP?平面PAC,
∴DE⊥平面PAC,∵DE?平面PDE,
∴平面PDE⊥平面PAC.
(Ⅱ)$\overrightarrow{DE}=({-1,2,0}),\overrightarrow{PE}=({1,2,-2})$,
设$\overrightarrow n=({x,y,z})$是平面PDE的一个法向量,则$\overrightarrow n•\overrightarrow{DE}=\overrightarrow n•\overrightarrow{PE}=0$,
∴$\left\{\begin{array}{l}{-x+2y=0}\\{x+2y-2z=0}\end{array}\right.$,
令x=2,则y=1,z=2,即$\overrightarrow n=({2,1,2})$,
∴$\overrightarrow{n}•\overrightarrow{CP}$=4,|$\overrightarrow{n}$|=3,|$\overrightarrow{CP}$|=2,
∴cos<$\overrightarrow{n},\overrightarrow{CP}$>=$\frac{\overrightarrow{n}•\overrightarrow{CP}}{|\overrightarrow{n}||\overrightarrow{CP}|}$=$\frac{2}{3}$.
∴直线PC与平面PDE所成的角的正弦值为$\frac{2}{3}$.

点评 本题考查了面面垂直的判定,线面角的计算,空间向量在几何证明中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.求值:cos(x+20°)cos(x-40°)+cos(x-70°)sin(x-40°).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥S-ABCD中,底面ABCD是菱形,∠BAD=60°,侧面SAB⊥底面ABCD,并且SA=SB=AB=2,F为SD的中点.
(1)证明:SB∥平面FAC;
(2)求三棱锥S-FAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图为四棱锥P-ABCD的表面展开图,四边形ABCD为矩形,$AB=\sqrt{2}$,AD=1.已知顶点P在底面ABCD上的射影为点A,四棱锥的高为$\sqrt{2}$,则在四棱锥P-ABCD中,PC与平面ABCD所成角的正切值为$\frac{{\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E,F分别是AB,PC的中点,设AC中点为O,若∠PDA=45°,则EF与平面ABCD所成的角的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.球的半径扩大为原来的2倍,则其表面积扩大为原来的(  )
A.2倍B.4倍C.6倍D.8倍

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,四面体ABCD中,AB,BC,CD,BD两两垂直,BC=BD=2,点E是CD的中点,异面直线AD与BE所成角的余弦值为$\frac{\sqrt{10}}{10}$,则直线BE与平面ACD所成角的正弦值为(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{2}{3}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在四棱锥P-ABCD中,AB∥CD,AB⊥AD,PA=AB=2CD=4,$PB=2AD=4\sqrt{2}$,平面PAB⊥平面ABCD.
(1)求证:BD⊥平面PAC;
(2)求二面角A-PC-D的余弦值;
(3)设点Q为线段PB上一点,且直线QC与平面PAC所成角的正弦值为$\frac{{\sqrt{3}}}{3}$,求$\frac{PQ}{PB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若1≤x≤4,3≤y≤6,则$\frac{x}{y}$的取值范围是(  )
A.$[\frac{1}{3},\frac{2}{3}]$B.$[\frac{1}{6},\frac{4}{3}]$C.$[\frac{1}{3},\frac{4}{3}]$D.$[\frac{2}{3},\frac{4}{3}]$

查看答案和解析>>

同步练习册答案