精英家教网 > 高中数学 > 题目详情
12.如图为四棱锥P-ABCD的表面展开图,四边形ABCD为矩形,$AB=\sqrt{2}$,AD=1.已知顶点P在底面ABCD上的射影为点A,四棱锥的高为$\sqrt{2}$,则在四棱锥P-ABCD中,PC与平面ABCD所成角的正切值为$\frac{{\sqrt{6}}}{3}$.

分析 作出四棱锥的直观图,根据PA⊥平面ABCD即可得出∠PCA为所求角,利用勾股定理计算AC,即可得出线面角的正切值.

解答 解:作出四棱锥的直观图如图所示:
∵顶点P在底面ABCD上的射影为点A,∴PA⊥平面ABCD,
∴∠PCA为直线PC与平面ABCD所成的角,PA=$\sqrt{2}$.
∵四边形ABCD为矩形,$AB=\sqrt{2}$,AD=1,
∴AC=$\sqrt{3}$,
∴tan∠PCA=$\frac{PA}{AC}=\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}$.
故答案为:$\frac{\sqrt{6}}{3}$.

点评 本题考查了线面角大小的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}的前n项和为Sn,a1=1,S2•S3=36,且对任意n∈N*都有an+1>an,则S5=25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
$\overrightarrow x$$\overrightarrow y$$\overrightarrow w$ $\sum_{i=1}^8{\;}$(x1-$\overrightarrow x$)2$\sum_{i=1}^8{\;}$(w1-$\overrightarrow w$)2$\sum_{i=1}^8{\;}$(x1-$\overrightarrow x$)(y-$\overrightarrow y$)$\sum_{i=1}^8{\;}$(w1-$\overrightarrow w$)(y-$\overrightarrow y$)
46.656.36.8289.81.61469108.8
表中${w_i}=\sqrt{x_i}$,$\overrightarrow w$=$\frac{1}{8}$$\sum_{i=1}^8{w_i}$
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答
当年宣传费x=49时,年销售量及年利润的预报值是多少?
附:对于一组数据(u1 v1),(u2 v2)…..(un vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:$\widehatβ=\frac{{\sum_{i=1}^n{({u_i}-\overline u)({v_i}-\overline v)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}},\widehatα=\overline v-\widehatβ\overline u$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四边形ABCD是边长为2的菱形,∠ABC=60°,PA⊥平面ABCD,
E为PC中点.
(Ⅰ)求证:平面BED⊥平面ABCD;
(Ⅱ)若∠BED=90°,求三棱锥E-BDP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在正六棱锥P-ABCDEF中,AB=1,若平面PAB⊥平面PDE,则PA=$\frac{{\sqrt{7}}}{2}$,该正六棱锥的体积是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知某一起的使用年限x(年)和其维修费用y(万元)的统计数据;
使用年限x12345
维修费用y1.32.54.05.66.6
由散点图知y对x具有线性相关关系,利用线性回归方程估计使用年限为10年时,维修费用为(  )万元.
A.12.86B.13.38C.13.59D.15.02

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,四棱锥P-ABCD的底面为直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E为AB的中点.
(1)求证:平面PDE⊥平面PAC;
(Ⅱ)求直线PC与平面PDE所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.甲、乙、丙三人参加一个掷硬币的游戏,每一局三人各掷硬币一次;当有一人掷得的结果与其他二人不同时,此人就出局且游戏终止;否则就进入下一局,并且按相同的规则继续进行游戏;规定进行第十局时,无论结果如何都终止游戏.已知每次掷硬币中正面向上与反面向上的概率都是$\frac{1}{2}$,则下列结论中
①第一局甲就出局的概率是$\frac{1}{3}$;②第一局有人出局的概率是$\frac{1}{2}$;
③第三局才有人出局的概率是$\frac{3}{64}$;④若直到第九局才有人出局,则甲出局的概率是$\frac{1}{3}$;
⑤该游戏在终止前,至少玩了六局的概率大于$\frac{1}{1000}$.
正确的是(  )
A.①②B.②④⑤C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△AOB中,O为原点,若已知A(2,cosθ)、B(sinθ,2),(θ∈(0,$\frac{π}{2}$]),求△AOB面积的最大值.

查看答案和解析>>

同步练习册答案