分析 (1)连接BD交AC于点E,连接EF,由中位线定理可得EF∥SB,故而SB∥平面FAC;
(2)取AB的中点O,连接SO,则利用面面垂直的性质得出SO⊥平面ABCD,即SO为棱锥的高,求出三棱锥S-ACD和三棱锥F-ACD的体积,则VS-FAC=VS-ACD-VF-ACD.
解答
(1)证明:连接BD交AC于点E,连接EF
∵四边形ABCD是菱形,
∴E是BD的中点,又F是SD的中点,
∴EF∥SB,
又EF?平面FAC,SB?平面FAC,
∴SB∥平面FAC.
(2)解:取AB的中点O,连接SO,
∵SA=SB=AB=2,∴SO=$\sqrt{3}$,SO⊥AB,
∵侧面SAB⊥底面ABCD,侧面SAB∩底面ABCD=AB,SO⊥AB,SO?平面SAB,
∴SO⊥平面ABCD,
∵${S_{△ACD}}=\frac{1}{2}\;•\;2\;•\;2sin120°=\sqrt{3}$,
∴VS-ACD=$\frac{1}{3}{S}_{△ACD}•SO$=$\frac{1}{3}×\sqrt{3}×\sqrt{3}$=1.
∵F是SD的中点,
∴VF-ACD=$\frac{1}{2}$VS-ACD=$\frac{1}{2}$.
∴VS-FAC=VS-ACD-VF-ACD=1-$\frac{1}{2}=\frac{1}{2}$.
点评 本题考查了线面平行的判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ${A}_{8}^{8}$种 | B. | 3${A}_{7}^{7}$种 | C. | 3${A}_{6}^{6}$种 | D. | ${A}_{3}^{3}$${A}_{6}^{6}$种 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| $\overrightarrow x$ | $\overrightarrow y$ | $\overrightarrow w$ | $\sum_{i=1}^8{\;}$(x1-$\overrightarrow x$)2 | $\sum_{i=1}^8{\;}$(w1-$\overrightarrow w$)2 | $\sum_{i=1}^8{\;}$(x1-$\overrightarrow x$)(y-$\overrightarrow y$) | $\sum_{i=1}^8{\;}$(w1-$\overrightarrow w$)(y-$\overrightarrow y$) |
| 46.6 | 56.3 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com