分析 连结OE,OF,由中位线定理可得OF∥PA,故OF⊥平面ABCD,所以∠FEO为所求角,根据∠PDA=45°得出PA=AD,于是OE=OF,从而∠FEO=45°.
解答
解:连结OE,OF,
∵O,F是AC,PC的中点,
∴OF∥PA,OF=$\frac{1}{2}PA$.
∵PA⊥平面ABCD,
∴OF⊥平面ABCD,∴∠FEO是EF与平面ABCD所成的角.
∵∠PDA=45°,∴PA=AD,
∵O,E是AC,AB的中点,∴OE=$\frac{1}{2}BC=\frac{1}{2}AD$,
∴OF=OE,
∴∠FEO=45°.
故答案为:45°.
点评 本题考查了线面垂直的性质,线面角的计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 销售量x(吨) | 2 | 3 | 5 | 6 |
| 销售收入y(千元) | 7 | 8 | 9 | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com