精英家教网 > 高中数学 > 题目详情
18.已知集合P={x|x-1≤0},M={x|x+2>0},则P∩M=(  )
A.(-∞,1]B.[-2,+∞)C.[1,2)D.(-2,1]

分析 化简集合P,M,根据交集的定义进行计算即可

解答 解:集合P={x|x-1≤0}=(-∞,1],M={x|x+2>0}=(-2,+∞),
则P∩M=(-2,1],
故选:D

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若变量x,y满足约束条件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,且z=2x+y的最大值和最小值分别为m和n,则m+n=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆F1:(x+1)2+y2=t2,圆F2:(x-1)2+y2=(2$\sqrt{2}$-t)2,0<t<2$\sqrt{2}$,当两个圆有公共点时,所有可能的公共点组成的曲线记为C.
(1)求出曲线C的方程;
(2)已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),M、N、P为曲线C上不同三点,$\overrightarrow{{F}_{2}M}$=λ$\overrightarrow{{F}_{2}N}$=μ$\overrightarrow{a}$,求△PMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与椭圆$\frac{{x}^{2}}{{m}^{2}}$$+\frac{4{y}^{2}}{{m}^{2}}$=1的离心率互为倒数,则双曲线的渐近线方程是(  )
A.y=±$\frac{\sqrt{3}}{3}$xB.y=±$\frac{1}{3}$xC.y=±$\sqrt{3}$xD.y=$±\frac{\sqrt{3}}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.学校从参加高三年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),得到如下数学成绩的频率分布表:
分组频数频率
[40,50)2
[50,60)3
[60,70)0.28
[70,80)15
[80,90)12
[90,100]4
(Ⅰ)请在答题卡上完成频率分布表和作出频率分布直方图;
(Ⅱ)用样本估计总体,若高三年级共有2000人,估计成绩不及格(60分以下)的人数;
(Ⅲ)为了帮助成绩差的学生提高数学成绩,现从成绩[90,100]的学生中选两位同学,共同帮助成绩在[40,50)中的某一位同学,即成立帮扶学习小组,样本中已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=sinωx(ω>0)的最小正周期为π,则下列直线为f(x)的对称轴的是(  )
A.x=$\frac{π}{2}$B.x=$\frac{π}{3}$C.x=$\frac{π}{4}$D.x=$\frac{π}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y-1≤0}\\{x+y≥0}\\{x+2y-4≥0}\end{array}\right.$,则z=x-2y的最大值为$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=ax-$\frac{1}{x}$,g(x)=lnx,x>0,a∈R是常数
(Ⅰ)求曲线y=g(x)在点P(1,g(1)处的切线方程;
(Ⅱ)设F(x)=f(x)-g(x),讨论函数F(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若向量$\overrightarrow{m}$=(2,1),$\overrightarrow{n}$=(-3,2λ),且(2$\overrightarrow{m}$-$\overrightarrow{n}$)∥($\overrightarrow{m}$+3$\overrightarrow{n}$),则实数λ=-$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案