精英家教网 > 高中数学 > 题目详情
1.已知F1,F2分别为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,过F1的直线l与双曲线C的左右两支分别交于A,B两点,若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的渐近线方程为y=±2$\sqrt{3}$x.

分析 设|AF1|=t,|AB|=3x,根据双曲线的定义算出t=3x,x=a,Rt△ABF2中算出cos∠BAF2,可得cos∠F2AF1,在△F2AF1中,利用余弦定理与双曲线的离心率公式加以计算,可得答案.

解答 解:设|AF1|=t,|AB|=3x,则|BF2|=4x,|AF2|=5x,
根据双曲线的定义,得|AF2|-|AF1|=|BF1|-|BF2|=2a,
即5x-t=(3x+t)-4x=2a,解得t=3x,x=a,
即|AF1|=3a,|AF2|=5a,
∵|AB|:|BF2|:|AF2|=3:4:5,得△ABF2是以B为直角的Rt△,
∴cos∠BAF2=$\frac{3}{5}$,
可得cos∠F2AF1=-$\frac{3}{5}$,
△F2AF1中,|F1F2|2=|AF1|2+|AF2|2-2|AF1|•|AF2|cos∠F2AF1
=9a2+25a2-2×3a×5a×(-$\frac{3}{5}$)=52a2
可得|F1F2|=$2\sqrt{13}$a,即c=$\sqrt{13}$a,
因此b=2$\sqrt{3}$a,
∴双曲线的渐近线方程为y=±2$\sqrt{3}$x.
故答案为:y=±2$\sqrt{3}$x.

点评 本题着重考查了双曲线的定义与简单几何性质、直角三角形的判定与性质、利用余弦定理解三角形等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)长轴为4,离心率为$\frac{1}{2}$,点P为椭圆上异于顶点的任意一点,过点P作椭圆的切线l交y轴于点A,直线l′过点P且垂直于l交y轴于B,试判断以AB为直径的圆能否经过定点,若能求出定点坐标,若不能说出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:?m∈R,sinm=$\frac{1}{3}$,命题q:?x∈R,x2+mx+1>0恒成立,若p∧q为假命题,则数m的取值范围是(  )
A.m≥2B.m≤-2C.m≤-2或m≥2D.-2≤m≤2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知F1、F2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,P是椭圆上任一点,过一焦点引∠F1PF2的外角平分线的垂线,垂足为A.若|OA|=2b,则该椭圆的离心率e为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=(  )
A.B.{ 2 }C.{ 5 }D.{ 2,5 }

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:$\overrightarrow{a}$=(-$\sqrt{3}$,1),($\overrightarrow{a}$+2$\overrightarrow{b}$)⊥$\overrightarrow{a}$,($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则|$\overrightarrow{b}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.有红、黄、蓝三种颜色,大小相同的小球各三个,在每种颜色的3个小球上分别标上号码1、2、3,现任取出3个,它们的颜色与号码均不相同的概率是(  )
A.$\frac{1}{14}$B.$\frac{9}{28}$C.$\frac{3}{28}$D.$\frac{3}{56}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.己知等差数列{an},设其前n项和为Sn,满足S5=20,S8=-4.
(1)求an与Sn
(2)设cn=anan+1an+2,Tn是数列{cn}的前n项和,若对任意n∈N+,Tn≤$\frac{m-466}{3}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=x+\frac{1+a}{x}-alnx$,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若在区间[1,e](e=2.718…)上存在一点x0,使得${x_0}+\frac{1}{x_0}<a(ln{x_0}-\frac{1}{x_0})$成立,求a的取值范围.

查看答案和解析>>

同步练习册答案