精英家教网 > 高中数学 > 题目详情
已知关于x的一元二次方程x2+2ax+b2=0.
(Ⅰ)若a是从0,1,2,3四个数中任取的一个数,b是从1,2,3三个数中任取的一个数,求上述方程有实根的概率.
(Ⅱ)若a是从区间[0,3]任取的一个数,b是从区间[1,3]任取的一个数,求上述方程有实根的概率.
考点:几何概型,古典概型及其概率计算公式
专题:
分析:(1)本题是一个古典概型,确定试验发生包含的基本事件,满足条件的事件的结果数,求得概率.
(2)本题是一个几何概型,试验的全部结束所构成的区域为{(a,b)|0≤a≤3,1≤b≤3},满足条件的构成事件A的区域为{(a,b)|0≤a≤2,0≤b≤3,a≥b},根据概率等于面积之比,得到概率.
解答: 解:(1)△=4a2-4b2≥0,∴a≥b,∴满足条件的基本事件有6个:(1,1);(2,1);(2,2);(3,1);(3,2);(3,3).
所有基本事件总数有4×3=12个 …
根据古典概型:P=
6
12
=
1
2

(2)试验的全部结果构成的区域为{(a,b)|0≤a≤3,1≤b≤3},面积为3×2=6,
构成事件A的区域为A={(a,b)|0≤a≤3,1≤b≤3,a≥b},面积为
1
2
×2×2
=2
所以所求的概率为P(A)=
2
6
=
1
3
点评:本题考查古典概型及其概率公式,考查几何概型及其概率公式,本题把两种概率放在一个题目中进行对比,得到两种概率的共同之处和不同点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知角α的终边经过点P(-4,3).
(1)求
sin(π-α)+cos(-α)
tan(π+α)
的值;
(2)求cos(α+
π
6
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,海中有一小岛P,周围4海里内有暗礁.海轮由西向东航行,在A处望见岛P在北偏东75°.航行10海里到达B处,望见岛P在北偏东60°.如果海轮继续由西向东航行,有没有触礁的危险?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b为常数,且a≠0,函数f(x)=axlnx-ax+b,若f(e)=2(其中e=2.71828…是自然对数的底数);
(Ⅰ)求实数b的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当a=1时,若对?x1,x2∈[
1
e
,e],|f(x1)-f(x2)|<C恒成立,求实数C的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
1+x
x-1

(1)判断函数f(x)在(1,+∞)上的单调性;并给予证明.
(2)令函数g(x)=-ax2+8(x-1)af(x)-5,a≥8时,存在最大实数t,使得x∈(1,t],-5≤g(x)≤5恒成立,试写出t与a的关系式,并求出最大实数t.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:2x-3y+1=0,点A(-1,-2),求:
(1)点A关于直线l1的对称点A1的坐标
(2)直线 m:3x-2y-6=0关于直线l1的对称直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=BB1=1,D是A1C的中点.
(Ⅰ)求BD的长;
(Ⅱ)求证:平面ABB1⊥平面BDC.

查看答案和解析>>

科目:高中数学 来源: 题型:

房间里有n盏电灯,分别由n个开关控制,至少开1盏灯用以照明,共有an种不同的照明方法(其中n∈N*
(1)当n=5时,求a5
(2)求an
(3)求证:
1
a1+1
+
1
2(a2+1)
+…+
1
n(an+1)
<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

1
3+4i
=
 

查看答案和解析>>

同步练习册答案