精英家教网 > 高中数学 > 题目详情
已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是
x=1+tcosα
y=tsinα
(t是参数)
(1)将曲线C的极坐标方程化为直角坐标方程;
(2)若直线l与曲线C相交于A、B两点,且|AB|=
14
,求直线的倾斜角α的值.
考点:参数方程化成普通方程
专题:坐标系和参数方程
分析:本题(1)可以利用极坐标与直角坐标 互化的化式,求出曲线C的直角坐标方程;
(2)先将直l的参数方程是
x=1+tcosα
y=tsinα
(t是参数)化成普通方程,再求出弦心距,利用勾股定理求出弦长,也可以直接利用直线的参数方程和圆的普通方程联解,求出对应的参数t1,t2的关系式,利用|AB|=|t1-t2|,得到α的三角方程,解方程得到α的值,要注意角α范围.
解答: 解:(1)∵ρcosθ=x,ρsinθ=y,ρ2=x2+y2
∴曲线C的极坐标方程是ρ=4cosθ可化为:
ρ2=4ρcosθ,
∴x2+y2=4x,
∴(x-2)2+y2=4.
(2)将
x=1+tcosα
y=tsinα
代入圆的方程(x-2)2+y2=4得:
(tcosα-1)2+(tsinα)2=4,
化简得t2-2tcosα-3=0.
设A、B两点对应的参数分别为t1、t2
t1+t2=2cosα
t1t2=-3

∴|AB|=|t1-t2|=
(t1-t2)2-4t1t2
=
4cos2α+12

∵|AB|=
14

4cos2α+12
=
14

∴cosα=±
2
2

∵α∈[0,π),
α=
π
4
α=
3
4
π

∴直线的倾斜角α=
π
4
α=
3
4
π
点评:本题考查了极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化,本题难度适中,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆两焦点为F1(-4,0)、F2(4,0),P在椭圆上,若△PF1F2的面积的最大值为12,则椭圆方程是(  )
A、
x2
16
+
y2
9
=1
B、
x2
25
+
y2
9
=1
C、
x2
25
+
y2
16
=1
D、
x2
25
+
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AC=1,AB=2,∠A的平分线AD=
6
2
,则BC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2|ex-ea|-
ex
x
+ea,x∈(0,1],a∈R

(1)当a≥1时,求函数f(x)的单调区间;
(2)当a∈(0,1)时,求函数f(x)的最大值的表达式M(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,直角梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=
1
2
BC,E是底边BC上的一点,且EC=3BE.现将△CDE沿DE折起到△C1DE的位置,得到如图2所示的四棱锥C1-ABED,且C1A=AB.
(1)求证:C1A⊥平面ABED;
(2)若M是棱C1E的中点,求直线BM与平面C1DE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:kx-y-3k=0,圆C方程为x2+y2-8x-2y+9=0
(1)求证:直线和圆相交;
(2)当圆截直线所得弦最长时,求k的值;
(3)直线将圆分成两个弓形,当弓形面积之差最大时,求直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)由x-ln[f(x)+1]=0确定,则导函数y=f′(x)图象的大致形状是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则该几何体的体积是(  )
A、1
B、2
C、
1
3
D、
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、样本10,6,8,5,6的标准差是3.3.
B、“p∨q为真”是“p∧q为真”的充分不必要条件
C、已知点A(-2,1)在抛物线y2=2px(p>0)的准线上,记其焦点为F,则直线AF的斜率等于-4
D、设有一个回归直线方程为
?
y
=2-1.5x
,则变量x每增加一个单位,
?
y
平均减少1.5个单位

查看答案和解析>>

同步练习册答案