【题目】我市大学生创业孵化基地某公司生产一种“儒风邹城”特色的旅游商品.该公司年固定成本为10万元,每生产千件需另投入2.7万元;设该公司年内共生产该旅游商品
千件并全部销售完,每千件的销售收入为
万元,且满足函数关系:
.
(Ⅰ)写出年利润
(万元)关于该旅游商品
(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该公司在该旅游商品的生产中所获年利润最大?
科目:高中数学 来源: 题型:
【题目】已知点
,直线
,且点
不在直线
上.
(1)若点
关于直线
的对称点为
,求
点坐标;
(2)求证:点
到直线
的距离
;
(3)当点
在函数
图像上时,(2)中的公式变为
,
请参考该公式,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=﹣x3+bx(b为常数),若方程f(x)=0的根都在区间[﹣2,2]内,且函数f(x)在区间(0,1)上单调递增,则b的取值范围是( )
A.[3,+∞)
B.(3,4]
C.[3,4]
D.(﹣∞,4]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,函数
.
(1)当
时,解不等式
;
(2)若关于
的方程
的解集中恰有两个元素,求
的取值范围;
(3)设
,若对任意
,函数
在区间
上的最大值与最小值的和不大于
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求满足下列条件的直线方程.
(1)经过点A(-1,-3),且斜率等于直线3x+8y-1=0斜率的2倍;
(2)过点M(0,4),且与两坐标轴围成三角形的周长为12.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某市准备在道路
的一侧修建一条运动比赛道,赛道的前一部分为曲线段
,该曲线段是函数
,
时的图象,且图象的最高点为
.赛道的中间部分为长
千米的直线跑道
,且
.赛道的后一部分是以
为圆心的一段圆弧
.
![]()
(1)求
的值和
的大小;
(2)若要在圆弧赛道所对应的扇形
区域内建一个“矩形草坪”,矩形的一边在道路
上,一个顶点在半径
上,另外一个顶点
在圆弧
上,且
,求当“矩形草坪”的面积取最大值时
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com