精英家教网 > 高中数学 > 题目详情
3.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(3,$\sqrt{3}$),若向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,则实数m的值为(  )
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

分析 求出两向量的模,根据向量数量积的不同计算方法列方程解出m.

解答 解:|$\overrightarrow{a}$|=$\sqrt{{m}^{2}+1}$,|$\overrightarrow{b}$|=$\sqrt{9+3}$=2$\sqrt{3}$,$\overrightarrow{a}•\overrightarrow{b}$=3+$\sqrt{3}$m,
∵向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,
∴3+$\sqrt{3}$m=$\sqrt{{m}^{2}+1}$•2$\sqrt{3}$•$\frac{1}{2}$,
解得m=-$\frac{\sqrt{3}}{3}$.
故选:B.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.定义运算a?b=$\frac{a+b-|a-b|}{2}$,则当a=3+log${\;}_{\frac{1}{4}}$x,b=log2x时,函数f(x)=a?b的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.正方体ABCD-A′B′C′D′中,AB′与A′C′所在直线的夹角为(  )
A.30°B.60°C.90°D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知在三棱锥P-ABC中,AP=AB=AC=1,BC=PB=PC=$\sqrt{2}$,顶点都在一个球面上,则该球的表面积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=7,则向量$\overrightarrow{a}$,$\overrightarrow{b}$夹角的余弦值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题“?x≥1,x2≥1”的否定是(  )
A.“?x≥1,x2<1”B.“?x<1,x2≥1”C.“?x0<1,x2≥1”D.“?x0≥1,x2<1”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“互联网+”时代,全民阅读的内涵已经多元化,倡导读书成为一种生活方式,某校为了解高中学生的阅读情况,拟采取分层抽样的方法从该校三个年级的学生中抽取一个容量为60的样本进行调查,已知该校有高一学生600人,高二学生400人,高三学生200人,则应从高一学生抽取的人数为(  )
A.10B.20C.30D.40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知三个函数:①f(x)=x3,②f(x)=tanx,③f(x)=xsinx,其图象能将圆O:x2+y2=1的面积等分的函数的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,且a1=3,Sn+1-2Sn=1-n.
(I)求数列{an}的通项公式;
(Ⅱ)令bn=$\frac{{2}^{n-1}}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案