精英家教网 > 高中数学 > 题目详情
20.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:$\left\{\begin{array}{l}{x=m+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t是参数).
(1)若直线l与曲线C相交于A、B两点,且|AB|=$\sqrt{14}$,试求实数m值.
(2)设M(x,y)为曲线C上任意一点,求x+2y的取值范围.

分析 (1)求出圆的圆心和半径,根据垂径定理列出方程解出m;
(2)求出曲线C的参数方程,将参数方程代入x+2y得到关于参数得三角函数,使用三角函数的性质得出最值.

解答 解:(1)∵ρ=4cosθ,∴ρ2=4ρcosθ,∴曲线C的直角坐标方程为:x2+y2-4x=0,即(x-2)2+y2=4.
∵$\left\{\begin{array}{l}{x=m+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$,∴直线l的直角坐标方程为:y=x-m.即x-y-m=0.
∵|AB|=$\sqrt{14}$,∴圆心到直线l的距离(弦心距)d=$\sqrt{{2}^{2}-(\frac{\sqrt{14}}{2})^{2}}=\frac{\sqrt{2}}{2}$.
即$\frac{|2-0-m|}{\sqrt{2}}=\frac{\sqrt{2}}{2}$,解得m=1或m=3.
(2)曲线C的参数方程为:$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),
∵M(x,y)为曲线C上任意一点,∴x+2y=2+2cosθ+4sinθ=2+2$\sqrt{5}$sin(θ+φ).
∴x+2y的取值范围是[2-2$\sqrt{5}$,2+2$\sqrt{5}$].

点评 本题考查了极坐标方程,参数方程与普通方程的转化,参数方程的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.比较下列两组数的大小
(1)sin$\frac{21π}{5}$与sin$\frac{42π}{5}$:
(z)sin$\frac{7}{4}$与cos$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在所有的两位正整数中,既能被2整除,又能被3整除的数共有16个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线${C_1}:\left\{\begin{array}{l}x=2cost\\ y=sint\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为$ρ=\frac{7}{cosθ-2sinθ}$.
(1)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程;
(2)设P为曲线C1上的点,求P到曲线C2的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l:ρcosθ-ρsinθ-1=0和曲线C:$\left\{\begin{array}{l}{x=1+2sinφ}\\{y=-1+2cosφ}\end{array}\right.$(φ为参数)
(1)将l与C的方程化为普通方程;
(2)判定直线l与曲线 C是否相交,若相交求出l被C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax2-blnx在点A(1,f(1))处的切线方程为y=1;
(1)求实数a,b的值;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线C的参数方程为:$\left\{{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数),直线l的参数方程为:$\left\{{\begin{array}{l}{x=2+\sqrt{3}t}\\{y=1+t}\end{array}}\right.$(t为参数),点P(2,1),直线l与曲线C交于A,B两点.
(1)写出曲线C和直线l在直角坐标系下的标准方程;
(2)求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.与双曲线$\frac{{x}^{2}}{2}$-y2=1有相同渐近线,且与椭圆$\frac{y^2}{8}+\frac{x^2}{2}=1$有共同焦点的双曲线方程是(  )
A.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{4}$=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1D.$\frac{{y}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)与g(x)=($\frac{1}{2}$)x的图象关于直线y=x对称,则f(x2-2x)的单增区间为(  )
A.(-∞,0)B.(2,+∞)C.(0,1)D.[1,2)

查看答案和解析>>

同步练习册答案