精英家教网 > 高中数学 > 题目详情
10.函数f(x)与g(x)=($\frac{1}{2}$)x的图象关于直线y=x对称,则f(x2-2x)的单增区间为(  )
A.(-∞,0)B.(2,+∞)C.(0,1)D.[1,2)

分析 由条件可知f(x),g(x)互为反函数,从而得到$f(x)=lo{g}_{\frac{1}{2}}x$,这便得出$f({x}^{2}-2x)=lo{g}_{\frac{1}{2}}({x}^{2}-2x)$,该函数是由$y=lo{g}_{\frac{1}{2}}t$和t=x2-2x复合而成的复合函数,根据复合函数的单调性即可求出该函数的单调增区间.

解答 解:由题意知,f(x)与g(x)互为反函数;
∴$f(x)=lo{g}_{\frac{1}{2}}x$;
∴$f({x}^{2}-2x)=lo{g}_{\frac{1}{2}}({x}^{2}-2x)$,令x2-2x=t,t>0,则$y=lo{g}_{\frac{1}{2}}t$为减函数;
t=x2-2x的单调减区间为(-∞,0);
∴复合函数f(x2-2x)的单调增区间为(-∞,0).
故选:A.

点评 考查反函数的概念,反函数和原函数图象的对称性,以及指数式和对数式的互化,对数函数和二次函数的单调性,复合函数单调区间的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:$\left\{\begin{array}{l}{x=m+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t是参数).
(1)若直线l与曲线C相交于A、B两点,且|AB|=$\sqrt{14}$,试求实数m值.
(2)设M(x,y)为曲线C上任意一点,求x+2y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在四棱锥P-ABCD中,AD⊥平面PDC,PD⊥DC,底面ABCD是梯形,AB∥DC,AB=AD=PD=1,CD=2.
(1)求异面直线PA,BC所成角;
(2)设Q为棱PC上一点,$\overrightarrow{PQ}$=λ$\overrightarrow{PC}$,试确定λ的值,使得二面角Q-BD-P为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.运行如图所示程序框图,输出的结果是(  )
A.15B.23C.47D.95

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点F1,F2是椭圆C:$\frac{x^2}{4}+{y^2}$=1的焦点,点M在椭圆C上且满足|$\overrightarrow{M{F}_{1}}$+$\overrightarrow{M{F}_{2}}$|=2$\sqrt{3}$,则△MF1F2的面积为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题p:所有有理数都是实数;命题q:y=x2是奇函数.则下列命题中为真命题的是(  )
A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)为定义在R上的奇函数,当x>0时,f(x)=log2(x+7),则f(-1)=(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=a3sina+5a2x2的导数f′(x)=(  )
A.3a2cosa+10ax2B.3a2cosa+10ax2+10a2x
C.a3sina+10a2xD.10a2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C的中心在原点,焦点在x轴上,离心率等于$\frac{1}{2}$,它的一个顶点恰好是抛物线x2=8$\sqrt{3}$y的焦点.
(1)求椭圆C的标准方程;
(2)直线x=-2与椭圆交于P,Q两点,A,B是椭圆上位于直线x=-2两侧的动点.
①若直线AB的斜率为$\frac{1}{2}$,求四边形APBQ面积的最大值;
②当动点A,B满足∠APQ=∠BPQ时,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

同步练习册答案