精英家教网 > 高中数学 > 题目详情

某同学在研究函数 (R) 时,分别给出下面几个结论:

①等式时恒成立;      ②函数 f (x) 的值域为 (-1,1);

③若x1≠x2,则一定有f (x1)≠f (x2); ④函数在R上有三个零点.

其中正确结论的序号有_______________.(请将你认为正确的结论的序号都填上)

 

【答案】

①②③ 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某同学在研究函数f(x)=x2ex的性质时,得到如下的结论:
①f(x)的单调递减区间是(-2,0);
②f(x)无最小值,无最大值
③f(x)的图象与它在(0,0)处切线有两个交点
④f(x)的图象与直线x-y+2012=0有两个交点
其中正确结论的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学在研究函数 f (x)=
x1+|x|
(x∈R) 时,分别给出下面几个结论:
①等式f(-x)+f(x)=0在x∈R时恒成立;
②函数 f (x) 的值域为 (-1,1);
③若x1≠x2,则一定有f (x1)≠f (x2);
④方程f(x)-x=0有三个实数根.
其中正确结论的序号有
①②③
①②③
.(请将你认为正确的结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学在研究函数f(x)=
x
1+|x|
(x∈R)时,给出了下面几个结论:
①函数f(x)的值域为(-1,1);②若f(x1)=f(x2),则恒有x1=x2;③f(x)在(-∞,0)上是减函数;
④若规定f1(x)=f(x),fn+1(x)=f[fn(x)],则fn(x)=
x
1+n|x|
对任意n∈N*恒成立,
上述结论中所有正确的结论是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学在研究函数f(x)=
2x
|x|+1
(x∈R)时,给出下列结论:
①f(-x)+f(x)=0对任意x∈R成立;
②函数f(x)的值域是(-2,2);
③若x1≠x2,则一定有f(x1)≠f(x2);
④函数g(x)=f(x)-2x在R上有三个零点.
则正确结论的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学在研究函数y=f(x)(x≥1,x∈R)的性质,他已经正确地证明了函数f(x)满足:f(3x)=3f(x),并且当1≤x≤3时,f(x)=1-|x-2|,这样对任意x≥1,他都可以求f(x)的值了.则
(1)f(8)=
 

(2)集合M={x|f(x)=f(99)}中最小的元素是
 

查看答案和解析>>

同步练习册答案