精英家教网 > 高中数学 > 题目详情
点P在
x2
9
+
y2
4
=1椭圆上,求点P到直线l:x+2y-10=0的最大距离及点P的坐标.
考点:直线与圆锥曲线的关系
专题:圆锥曲线中的最值与范围问题
分析:利用椭圆的参数方程可以设P(3sinx,2cosx),利用三角函数求最大值.
解答: 解:设x=3sinx,y=2cosx,则点p(x,y)到直线l:x+2y-10=0的距离
d=
|3sinx+4cosx-10|
12+22
=
|5sin(x+θ)-10|
5
,(tanθ=
4
3
),
∴当sin(x+θ)=-1时,d有最大值为
5+10
5
=3
5

此时由
sin(x+θ)=-1
tanθ=
4
3
sinx=-
3
5
cosx=-
4
5
∴P(-
9
5
-
8
5
).
点评:本题主要考查椭圆的参数方程及距离公式,考查三角函数的变换求最值的方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=a(x3-x)的减区间为(-
3
3
3
3
),则a的范围是(  )
A、a>0B、-1<a<0
C、a>-1D、-1<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列2,
7
10
13
,4,…,则2
7
是该数列的(  )
A、第7项B、第8项
C、第9项D、第10项

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2,|
b
|=4,向量
a
b
的夹角为60°,当(
a
+3
b
)⊥(k
a
-
b
)时,实数k的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:过空间内一点有且只有一个平面与已知直线垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

a+
1
a
=7,则
a
+
1
a
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1
x+
1
x
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e2x-1-2x.
(1)求函数f(x)的导数f'(x);
(2)证明:e2x-1>2x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)过点(1,
2
2
),离心率为
2
2
,左、右焦点分别为F1,F2.点P为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A,B和C,D,O为坐标原点.
(1)求椭圆的标准方程;
(2)设直线PF1,PF2的斜率存在,且分别为k1,k2
①求证:
1
k1
-
3
k2
为定值;
②是否存在这样的点P,使直线OA,OB,OC,OD的斜率之和为0?若存在,
求出所有满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案