| A. | $\frac{\sqrt{3}+1}{2}$ | B. | $\sqrt{3}+1$ | C. | $\frac{\sqrt{3}+\sqrt{6}}{2}$ | D. | $\sqrt{3}+\sqrt{6}$ |
分析 依题意可知|OF1|=|OF2|=|OP|判断出∠F1PF2=90°,设出|PF2|=t,则|F1P|=$\sqrt{2}$t,进而利用双曲线定义可用t表示出a,根据勾股定理求得t和c的关系,最后可求得双曲线的离心率.
解答 解:∵|OF1|=|OF2|=|OM|
∴∠F1MF2=90°
设|MF2|=t,则|F1M|=$\sqrt{2}$t,a=$\frac{\sqrt{2}t-t}{2}$
∴t2+2t2=4c2,
∴t=$\frac{2}{\sqrt{3}}$c
∴e=$\frac{c}{a}$=$\sqrt{3}$+$\sqrt{6}$.
故选:D.
点评 本题主要考查了双曲线的简单性质,考查了学生对双曲线定义的理解和灵活运用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com